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Chapter 1

Introduction and design rationale

This document presents a detailed description of MAYO, a multivariate quadratic signature scheme,
which was introduced by Beullens in [Beu22]. It is a variant of the Oil and Vinegar signature scheme
proposed in 1997 by Patarin [Pat97].

Oil and Vinegar. Since 1985, various authors have proposed building public key schemes where the
public key is a set of multivariate quadratic equations over a small finite field K. The general problem
of solving such a set of equations is NP-hard and considered a good basis for post-quantum cryptogra-
phy. The Oil and Vinegar scheme (sometimes referred to as unbalanced Oil and Vinegar) [KPG99, Pat97]
is one of the earliest signature schemes in this framework, and has withstood the test of time remark-
ably well, despite considerable cryptanalytic efforts. It has very small signature sizes and good per-
formance but suffers from somewhat larger public keys.

In the Oil and Vinegar scheme, the public key represents a trapdoored homogeneous multivariate map
P(x) = (p1, . . . , pm) : Fn

q → Fm
q which consists of a sequence of m multivariate quadratic polynomials

p1(x), · · · , pm(x) in n variables x = (x1, · · · , xn). The trapdoor information is a secret subspace O ⊂
Fn
q of dimension m, on which P(x) evaluates to zero. Given a salted hash digest t ∈ Fm

q of a message
M , the trapdoor information allows sampling a signature s such that P(s) = t.

To do this, the signer first picks a random vector v ∈ Fn
q , and then solves for a vector o in the oil

space O such that P(v + o) = t. In general, for a quadratic maps P we can define its differential P ′

as P ′(x,y) := P(x + y) − P(x) − P(y), which is a bilinear map. Using P ′, it becomes apparent that
solving for o is easy, because

P(v + o) = P ′ (v,o)︸ ︷︷ ︸
Linear in o

+���P(o)︸ ︷︷ ︸
=0

+P(v)︸ ︷︷ ︸
fixed

= t

is a system of m linear equations in m variables (since O has dimension m). The signer outputs the
signature s = v + o. To verify a signature, the verifier simply recomputes P(s) and the hash digest t,
and verifies that they are equal.

One practical drawback of the scheme is that the public mapP consists of approximately mn2/2 coef-
ficients. We can sampleP such that approximately m(n2 −m2)/2 of the coefficients can be expanded
publicly from a short seed, but the remaining m3/2 coefficient still make for a relatively large public
key size. (e. g., 66 KB for 128 bits of security). This problem is solved by the scheme we present in this
document: MAYO.

MAYO rationale. MAYO is a variant of the Oil and Vinegar scheme whose public keys are smaller. A
MAYO public key P has the same structure as an Oil and Vinegar public key, except that the dimension
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of the space O on which P evaluates to zero is “too small”, i.e., dim(O) = o, with o less than m. The
advantage of this is that the problem of recovering O from P becomes much harder, which allows for
smaller parameters. The reader can imagine O as being a needle that sits in the haystack Fn

q . If the
needle becomes smaller, then the haystack is allowed to be smaller as well, and the search problem
remains difficult. However, since O is “too small”, the algorithm to sample a signature s such that
P(s) = t breaks down: the system P(v + o) = t is now a system of m linear equations in only o vari-
ables, so it is very unlikely to have any solutions. We need a new way to produce and verify signatures.

The solution is to publicly “whip up” the oil and vinegar map P(x) : Fn
q → Fm

q into a k-fold larger
map P∗(x1, . . . ,xk) : Fkn

q → Fm
q , where k is a parameter of the scheme. The whipped map P∗ is

constructed in such a way that it evaluates to zero on the subspace Ok = {(o1, . . . ,ok) | ∀i : oi ∈ O}
which has dimension ko. Concretely, we define:

P∗(x1, . . . ,xk) :=

k∑
i=1

EiiP(xi) +

k∑
i=1

k∑
j=i+1

EijP ′(xi,xj)

where the Eij ∈ Fm×m
q are fixed public matrices1 (referred to as E-matrices), and P ′(x,y), the differ-

ential ofP , is defined asP ′(x,y) := P(x+y)−P(x)−P(y). We choose parameters such that ko > m to
make sure that the space Ok is large enough so that the signer can sample signatures s = (s1, · · · , sk)
such thatP∗(s) = twith the usual Oil and Vinegar approach. The signer first samples (v1, . . . ,vk) ∈ Fkn

q

at random, and then solves for (o1, . . .ok) ∈ Ok such that

P∗(v1 + o1, . . . ,vk + ok) = t

which is a system of m linear equations in ko variables.

This approach drastically reduces the public key size, since all but approximately mo2/2 coefficients
of P can be expanded publicly from a short seed. For example, one of the parameter sets we propose
for NIST security level 1 is (n,m, o, k, q) = (81, 64, 17, 4, 16), which results in a public key of just 4912
bytes, and a signature size of 186 bytes (162 bytes for s and 24 bytes for the salt). Compared to the
compressed Oil and Vinegar scheme at the same security level, this is a 14-fold reduction in public key
size at the cost of a 2-fold increase in signature size. We also propose a parameter set with even smaller
public keys, but larger signatures.

1For security reasons, we choose these matrices to have the property that all their non-trivial linear combinations have rank
m.
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Change Log

Modifications in Second Round Submission.

– Different representation of sequences of m matrices. Batches of matrices are now stored in
nibble-sliced form, rather than bitsliced form. This change allows for significantly faster imple-
mentations on AVX2 and Arm NEON platforms by using shuffle instructions, and slightly more
efficient implementations on Cortex-M4 platforms using the method of the four Russians. For
more information, we refer to [BCC+24].

– Updated security analysis. The security analysis section was expanded to keep it up to date with
the cryptanalysis of OV-based schemes. A paragraph about the rectangular minrank attack was
added, the section about claw-finding attacks was expanded, and the system-solving section was
expanded to encompass Hashimoto’s algorithm for solving underdetermined systems of multi-
variate quadratic polynomials.

– Updated parameters. New parameter sets are selected satisfying the following criteria:
– n− o ≤m. In the round 1 submission, the parameters satisfied o > n −m, which means

that the dimension of the variety defined by P(x) = 0 is larger than n − m, the generic
dimension of a variety defined by m multivariate quadatic equations in n variables. We
are not aware of ways to compute this dimension that are more efficient than known key
recovery attacks, so to the best of our knowledge this does not break the Oil and Vinegar as-
sumption, which says thatP is computationally indistinguishable from a randomly chosen
sequence of multivariate quadratic equations. Nevertheless, we decided to pick parame-
ters with o ≤ n −m, so that P(x) = 0 has dimension n −m. Additionally, this blocks the
rectangular Minrank attack [FI23], which simplifies the concrete security analysis of MAYO.

– Increased security margin against system-solving attacks. To hedge against improvements
in generic system-solving methods, we pick parameters to have at least 10, 15, and 20 bits
of security margin, for the NIST security level 1, 3, and 5 parameters respectively.

– Higher restart probability. During the signing procedure, there is a small probability that
theSampleSolution subroutine fails, in which case signing restarts. With the round 1 param-
eters this restart probability was lower than 2−36, which makes it hard to cover the complete
implementation with known answer tests. Therefore, for the round 2 parameters, we in-
creased this probability to between 2−12 and 2−20, so that the restarting is easier to test, but
still low enough so that the average signing time is not affected much.

– Added more implementations and benchmarks. We have added an Arm NEON optimized imple-
mentation of MAYO to the submission package, and included benchmark results for the Apple
M1 and M3 processors. We extended the Cortex-M4 optimized implementation to cover MAYO3,
and added benchmark results.

Differences between first round submission and [Beu22].

– New parameter choices. We propose new parameter choices that allow for simple and optimized
implementations of MAYO. In particular, we choose to work over the finite field of order 16.

– Instantiating the E-matrices. MAYO requires a set of k(k + 1)/2 public matrices Ei,j ∈ Fm×m
q

with the property that certain non-trivial linear combinations of them have rank m. We instan-
tiate these matrices by the matrix representation of multiplication by z0, z1, . . . , zk(k+1)/2−1 in
the field Fq[z]/(f(z)) for some irreducible polynomial f(z) of degree m. This is possible because
we choose parameters where k(k + 1)/2 ≤ m.
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Chapter 2

The MAYO protocol specification

2.1 Written specification

This section specifies the MAYO protocol. The set of public parameters for MAYO is defined in 2.1.7.
The necessary notation and preliminaries are defined in 2.1.2. The encoding functionality is defined
in 2.1.4. The signature functionality is defined in 2.1.5.

2.1.1 Parameters

The MAYO digital signature algorithm is parameterized by the following values:

– q, the size of a finite field Fq. In this specification, we fix q = 16.

– m, the number of multivariate quadratic polynomials in the public key. We choose it to be even.

– n, the number of variables in the multivariate quadratic polynomials in the public key.

– o, the dimension of the oil space O.

– k, the whipping parameter, satisfying k < n− o.

– salt bytes, the number of bytes in salt.

– digest bytes, the number of bytes in the hash digest of a message.

– pk seed bytes, the number of bytes in seedpk.

– f(z) ∈ Fq[z], an irreducible polynomial of degree m that does not divide the determinant of:

Z(k×k) =


zk−1 zk−2 · · · z 1

zk−2 z2k−2 · · · zk+1 zk

...
...

. . .
...

...
z zk+1 · · · zk(k+1)/2−2 zk(k+1)/2−3

1 zk · · · zk(k+1)/2−3 zk(k+1)/2−1

 ∈ Fq[z]
k×k .

The matrixZ(k×k) is symmetric, and the upper diagonal part contains the first k(k+1)/2 powers
of z, ordered from left to right, top to bottom.

These parameters define the following values:

– sk seed bytes = R bytes = salt bytes: The length of R and of seedsk, which are the same as that of
salt.

– O bytes = ⌈(n− o)o/2⌉: The number of bytes to represent the O matrix.
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– v bytes = ⌈(n− o)/2⌉: The number of bytes to store vinegar variables.

– P1 bytes = m
(
n−o+1

2

)
/2: The number of bytes to represent the {P1

i }i∈[m] matrices.

– P2 bytes = m(n− o)o/2: The number of bytes to represent the {P2
i }i∈[m] matrices.

– P3 bytes = m
(
o+1
2

)
/2: The number of bytes to represent the {P3

i }i∈[m] matrices.

– L bytes = m(n− o)o/2: The number of bytes to represent the {Li}i∈[m] matrices.

– csk bytes = sk seed bytes: The number of bytes in the compact representation of a secret key.

– esk bytes = sk seed bytes + O bytes + P1 bytes + L bytes: The number of bytes in the expanded
representation of a secret key.

– cpk bytes = pk seed bytes + P3 bytes: The number of bytes in the compact representation of a
public key.

– epk bytes = P1 bytes+P2 bytes+P3 bytes: The number of bytes in the expanded representation
of a public key.

– sig bytes = ⌈nk/2⌉+ salt bytes: The number of bytes in a signature.

– E ∈ Fm×m
q , the matrix that corresponds to multiplication by z mod f(Z).

2.1.2 Preliminaries and notation

Notation If X is a finite set, we write x
$←− X to denote that x is assigned a value chosen from X

uniformly at random. If A is an algorithm, we write x ← A(y) to denote that x is assigned the output
of running A on input y. If k is an integer, we denote by [k] the set {0, . . . , k−1}. We denote by {xi}i∈[k]

a sequence of objects x0, . . . , xk−1 indexed by elements of [k]. We denote the base-2 logarithm by log,
and we denote binomial coefficients by

(
n
k

)
, i.e.,

(
n
k

)
= n!/k!(n− k)!.

Bytes and byte strings. Inputs and outputs to all MAYO API functions are byte strings. We denote by
B = [256] = {0, . . . , 255} the set of all bytes, i.e. 8-bit unsigned integers. By Bk we denote the set of
zero-indexed byte strings of length k, and by B∗ the set of byte strings of arbitrary length. For a ∈ Bna

and b ∈ Bnb , we denote by a ∥ b the concatenation of the strings, which result is an element of Bna+nb .
If a is a byte string, we denote by a[x : y] the substring starting with the x-th byte and ending with the
(y − 1)-th byte (inclusive), e. g., a[0 : 10] consists of the first 10 bytes of a.

The field F16 and vectors over F16. We denote by F16 a finite field with 16 elements, which we repre-
sent concretely asZ2[x]/(x

4+x+1). We denote the addition and multiplication of field elements a and
b as a+b and ab respectively, and we denote the multiplicative inverse of a as a−1. We denote byFn

16 the
set of vectors of lengthn overF16, i.e. lists of field elements of lengthn. Ifx ∈ Fn

16,y ∈ Fn
16, and a ∈ F16,

we denote by x[i] or xi the i-th entry of x, i.e. x = {x[i]}i∈[n] = {xi}i∈[n]. For 0 ≤ i < j ≤ n, we denote
by x[i : j] ∈ Fj−i

16 the vector whose j− i elements are xi, . . . ,xj−1. We define the component-wise sum
as x+ y := {xi + yi}i∈[n], and the scalar multiplication as ax := {axi}i∈[n].

Matrices and Matrix arithmetic. We denote by Fm×n
16 the set of (zero-indexed) matrices over F16 with

m rows and n columns. We denote by Ia ∈ Fa×a
q the identity matrix of size a-by-a. If A ∈ Fm×n

q and
b ∈ Fm

q , we denote by A[i, j] the entry in the i-th row and the j-th column of A, by A[:, i] ∈ Fm
q the i-th

column of A, and by A[i, :] ∈ Fn
q the i-th row of A. We denote by (Ab) ∈ Fm×(n+1)

q the matrix whose
first n columns are the columns of A, and whose last column is b. We say a matrix A ∈ Fn×n

16 is upper
triangular if A[i, j] = 0 for all 0 ≤ j < i < n.

If A ∈ Fm×n
16 and B ∈ Fm×n

16 are matrices of the same size, then we denote their (entry-wise) sum by
A +B. If A ∈ Fm×n

16 and B ∈ Fn×k
16 , then we denote the matrix product by AB, i.e. AB ∈ Fn×k

16 is the
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matrix whose entry in row i and column j is equal to
∑n

l=0 A[i, l]B[l, j]. We denote byAT the transpose
of A, i.e. the matrix in Fn×m

16 such that AT[i, j] = A[j, i] for all 0 ≤ j < m and 0 ≤ i < n.

We define the function Upper : Fn×n
q → Fn×n

q that takes a square matrix M as input, and outputs the
upper triangular matrix Upper(M), defined as Upper(M)ii = Mii and Upper(M)ij = Mij + Mji for
i < j.

Sequences of m (upper triangular) matrices. The public keys and secret keys of MAYO contain sets
of m (sometimes upper triangular) matrices. Concretely, we will encounter:

– P(1) = {P(1)
i }i∈[m], a sequence of m upper triangular matrices P(1)

i ∈ F(n−o)×(n−o)
16 .

– P(2) = {P(2)
i }i∈[m], a sequence of m matrices P(2)

i ∈ F(n−o)×o
16 .

– P(3) = {P(3)
i }i∈[m], a sequence of m upper triangular matrices P(3)

i ∈ Fo×o
16 .

– L = {Li}i∈[m], a sequence of m matrices Li ∈ F(n−o)×o
16 .

Sampling a solution to a system of linear equations. For A ∈ Fm×ko
q a matrix of rank m with ko ≥ m,

for y ∈ Fm
q and r ∈ Fko

q , the function SampleSolution(A,y, r) (see Algorithm 2) outputs a solution x

such that Ax = y. The solution space has dimension ko −m, and the random vector r ∈ Fko
q is used

to pick each of the qko−m solutions with equal probability. This is done by solving the related system
Ax′ = y −Ar with the usual Gaussian Elimination approach, and outputting x = x′ + r. If the input
matrixA does not have rankm, then SampleSolution(A,y, r) outputs⊥, even in the somewhat unlikely
case that the system Ax = y has solutions. SampleSolution uses a subroutine EF (see Algorithm 1) that
performs elementary row operations on an input matrix B ∈ Fm×(n+1)

q to put it in echelon form with
leading terms equal to one. That is, the output of EF(B) is a matrix where all the zero rows are at the
bottom, the first non-zero element of each row is 1, and for all i > 0 the first non-zero element of row
i is strictly to the right of the first non-zero element of row i− 1.

Algorithm 1 EF(B)

Input: A matrix B ∈ Fm×(ko+1)
q

Output: A matrix B′ ∈ Fm×(ko+1)
q , the echelon form with leading ones of B.

1: pivot row← 0, pivot column← 0
2: while pivot row < m and pivot column < ko+ 1 do
3: possible pivots← {i | pivot row ≤ i < m and B[i, pivot column] ̸= 0})
4: if possible pivots = ∅ then
5: pivot column← pivot column+ 1 // Move to next column if there is no pivot.
6: continue
7: next pivot row← min(possible pivots)
8: Swap(B[pivot row, :],B[next pivot row, :])
9:

10: //Make the leading entry a “1”.
11: B[pivot row, :]← B[pivot row, pivot column]−1B[pivot row, :]
12:
13: //Eliminate entries below the pivot.
14: for row from next pivot row + 1 to m− 1 do
15: B[row, :]← B[row, :]−B[row, pivot column]B[pivot row, :]

16:
17: pivot row← pivot row + 1
18: pivot column← pivot column+ 1

19: return B
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Algorithm 2 SampleSolution(A,y, r)

Input: Matrix A ∈ Fm×ko
q

Require: ko ≥ m

Input: Target vector y ∈ Fm
q

Input: Randomness r ∈ Fko
q

Output: Solution x ∈ Fn
q that satisfies Ax = y if rank(A) = m; otherwise, output⊥.

1: //Randomize the system using r.
2: x← r ∈ Fko

q

3: y← y −Ar
4:
5: //Put (Ay) in echelon form with leading 1’s.
6: (Ay)← EF(Ay)
7:
8: //Check if A has rank m.
9: if A[m− 1, :] = 0n then

10: return⊥
11:
12: //Back-substitution
13: for r from m− 1 to 0 do
14: //Let c be the index of first non-zero element of A[r, :].
15: xc ← xc + yr

16: y← y − yrA[:, c]

17: return x

2.1.3 Hashing and randomness expansion

SHAKE256. We use theSHAKE256 extended output function for the purpose of hashing and sampling
secret material. We denote bySHAKE256(X, l) the function that takes a byte stringX ∈ B∗ and outputs
l bytes of output, as specified in the SHA-3 standard [SHA15].

AES-128-CTR-based seed expansion. MAYO uses an AES-128-CTR-based seed expansion function
to generate a large part of the coefficients of the multivariate quadratic mapP . We define the function
AES-128-CTR(seed, l), which takes a 16-byte seed seed, and produces l bytes of output. The output
is the concatenation of the AES-128-CTR encryptions of the blocks 0, 1, · · · , l/16 − 1 (the blocks are
16-byte counter values starting with zero, and counting up to l/16 − 1), using seed as the key in the
AES-128-CTR block cipher [AES01]. The implementation of the AES-128-CTR block cipher does not
need to be constant-time or side-channel secure, because the key, the input, and the output are all
public.

2.1.4 Data types and conversions

The MAYO protocol specified in this document involves operations using several data types. This sec-
tion lists the different data types and describes how to convert one data type to another.

2.1.4.1 Field element to nibble: EncodeF16
(a) ∈ [16]

We encode a field element a = a0 + a1x+ a2x
2 + a3x

3 as a nibble EncodeF16(a) ∈ [16], whose four bits
are (from least significant bit to most significant bit) (a0, a1, a2, a3).

2.1.4.2 Nibble to field element: DecodeF16
(nibble)

The operation DecodeF16
is the inverse of EncodeF16

. It takes a nibble as input and outputs the corre-
sponding field element.
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2.1.4.3 Vector to byte-string: Encodevec(x)

We encode a vector x ∈ Fn
16 as a string of ⌈n/2⌉ bytes by concatenating the encodings of the field

elements EncodeF16(x1), . . . ,EncodeF16(xn), and padding with the zero nibble if n is odd.

2.1.4.4 Byte-string to vector: Decodevec(n, bytestring)

The operation Decodevec(n, bytestring) takes a vector length n and a byte-string bytestring ∈ B⌈n/2⌉
as input, and outputs a vector in Fn

16, such that Decodevec(n,Encodevec(x)) = x for all n ∈ N and all
x ∈ Fn

16.

2.1.4.5 Matrix to byte-string: EncodeO(O)

We define the encoding function EncodeO(O) that encodes a matrix O ∈ F(n−o)×o
16 in row-major order

to a byte-string. More precisely, EncodeO first concatenates the n− o rows of O to make a single vector
v = (O[0, :]O[1, :] . . . O[n− o− 1, :]) of length (n− o)o, and then it outputs Encodevec(v).

2.1.4.6 Byte-string to Matrix: DecodeO(bytestring)

The operationDecodeO(bytestring) takes a byte-stringbytestring as input and outputs a matrix inF(n−o)×o
q

such that DecodeO(EncodeO(O)) = O for all matrices O ∈ F(n−o)×o
q .

2.1.4.7 Encoding a sequence of m (upper triangular) matrices.

Algorithm 3 defines an encoding function EncodeMatrices to encode a sequence of m (possibly upper
trianular) matrices A0, . . . ,Am−1 ∈ Fr×c

q .

The function encodes the entries of m-matrices in row-major order, resulting in m sequences of r × c

nibbles (r(r+1)/2 nibbles if the matrices are upper-triangular). Then it interleaves the m sequences.

This means that the encoding starts with m nibbles, which correspond to the m top-left entries of the
matrices, i.e., A0[0, 0], . . . ,Am−1[0, 0]. These are followed by the {Ai[0, 1]}i∈[m] entries etc. up to the
{Ai[0, c− 1]}i∈[m] entries. Then we continue with the next row starting with {Ai[1, 0]}i∈[m] and so on.
The last m nibbles of the encoding correspong to {Ai[r − 1, c− 1]}i∈[m].

If the Ai matrices are upper triangular, then EncodeMatrices works in the same way except that it skips
all the field elements Ak[i, j] with 0 ≤ j < i < r.

Algorithm 3 EncodeMatrices(r, c, {A}i∈[m], is triangular)

Input: r, c, the number of rows and columns of the matrices
Input: m matrices Ai ∈ Fr×c

16

Input: is triangular ∈ {0, 1}, a bit to indicate if the Ai are upper triangular or not.
Output: A byte string bytestring ∈ Bmrc/2 if is triangular = false, bytestring ∈ Bmr(r+1)/4 otherwise.

1: bytestring = ∅
2: for i from 0 to r − 1 do
3: for j from 0 to c− 1 do
4: if i ≤ j or is triangular = false then
5: bytestring = bytestring||Encodevec({Ak[i, j]}k∈[m])

6: return bytestring.

We define the encoding function for the sequences of matrices P(1),P(2),P(3), and L as:

1. EncodeP(1)(·) := EncodeMatrices(n− o, n− o, ·, true)

2. EncodeP(2)(·) := EncodeMatrices(n− o, o, ·, false)
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3. EncodeP(3)(·) := EncodeMatrices(o, o, ·, true)

4. EncodeL(·) := EncodeP(2)(·) ,

and we defineDecodeP(1) ,DecodeP(2) ,DecodeP(3) , andDecodeL to be the inverses ofEncodeP(1) ,EncodeP(2) ,
EncodeP(3) , and EncodeL, respectively.

2.1.5 The Basic MAYO functionalities

We define five functionalities:

– MAYO.CompactKeyGen (Algorithm 4): outputs a pair (csk, cpk) ∈ Bcsk bytes × Bcpk bytes, where csk

and cpk are compact representations of a MAYO secret key and public key respectively.

– MAYO.ExpandSK (Algorithm 5): takes as input csk, the compact representation of a MAYO secret
key, and outputs esk ∈ Besk bytes, an expanded representation of the secret key.

– MAYO.ExpandPK (Algorithm 6): takes as input cpk, the compact representation of a MAYO public
key, and outputs epk ∈ Bepk bytes, an expanded representation of the public key.

– MAYO.Sign (Algorithm 7): takes an expanded secret key esk, a message M ∈ B∗, and outputs a
signature sig ∈ Bsig bytes.

– MAYO.Verify (Algorithm 8): takes as input a message M, an expanded public key epk, a signature
sig, and salt, and outputs 1 or 0 if the signature is deemed valid or invalid, respectively.

Algorithm 4 MAYO.CompactKeyGen()
Output: Compact representation of a secret key csk ∈ Bcsk bytes

Output: Compact representation of a public key cpk ∈ Bcpk bytes

1: //Pick seedsk at random.
2: seedsk

$←− Bsk seed bytes

3:
4: //Derive seedpk and O from seedsk.
5: S← SHAKE256(seedsk, pk seed bytes+ O bytes)
6: seedpk ← S[0 : pk seed bytes] // seedpk ∈ Bpk seed bytes

7: O← DecodeO(S[pk seed bytes : pk seed bytes+ O bytes]) //O ∈ F(n−o)×o
q

8:
9: //Derive the P

(1)
i and P

(2)
i from seedpk.

10: P← AES-128-CTR(seedpk,P1 bytes+ P2 bytes)

11: {P(1)
i }i∈[m] ← DecodeP(1)(P[0 : P1 bytes]) //P

(1)
i ∈ F(n−o)×(n−o)

q upper triangular
12: {P(2)

i }i∈[m] ← DecodeP(2)(P[P1 bytes : P1 bytes+ P2 bytes]) //P
(2)
i ∈ F(n−o)×o

q

13:
14: //Compute the P

(3)
i .

15: for i from 0 to m− 1 do
16: P

(3)
i ← Upper(−OTP

(1)
i O−OTP

(2)
i ) //P

(3)
i ∈ Fo×o

q upper triangular
17:
18: //Encode the P

(3)
i .

19: cpk← seedpk ∥ EncodeP(3)({P(3)
i }i∈[m])

20: csk← seedsk
21:
22: //Output keys.
23: return (cpk, csk).

Remark. In lines 31,32, and 34 of the MAYO.Sign algorithm and line 25 of the MAYO.Verify algorithm we accu-
mulate values of the form Ely, where E ∈ Fm×m

q is a matrix that represent multiplication by z in a finite field
Fq[z]/f(z). Rather than computing the matrix multiplications explicitly, it could be more efficient to accumulate
the values in a single polynomial and do a single reduction mod f(z).
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Algorithm 5 MAYO.ExpandSK(csk)
Input: Compacted secret key csk ∈ Bcsk bytes

Output: Expanded secret key esk ∈ Besk bytes

1: //Parse csk
2: seedsk ← csk[0 : sk seed bytes]
3:
4: //Derive seedpk and O from seedsk.
5: S← SHAKE256(seedsk, pk seed bytes+ O bytes)
6: seedpk ← S[0 : pk seed bytes] // seedpk ∈ Bpk seed bytes

7: O bytestring← S[pk seed bytes : pk seed bytes+ O bytes] //O bytestring ∈ BO bytes

8: O← DecodeO(O bytestring) //O ∈ F(n−o)×o
q

9:
10: //Derive the P

(1)
i and P

(2)
i from seedpk.

11: P← AES-128-CTR(seedpk,P1 bytes+ P2 bytes)

12: {P(1)
i }i∈[m] ← DecodeP(1)(P[0 : P1 bytes]) //P

(1)
i ∈ F(n−o)×(n−o)

q upper triangular
13: {P(2)

i }i∈[m] ← DecodeP(2)(P[P1 bytes : P1 bytes+ P2 bytes]) //P
(2)
i ∈ F(n−o)×o

q

14:
15: //Compute the Li.
16: for i from 0 to m− 1 do
17: Li = (P

(1)
i +P

(1)T
i )O+P

(2)
i // Li ∈ F(n−o)×o

q

18:
19: //Encode the Li and output esk.
20: return esk = seedsk ∥ O bytestring ∥ P[0 : P1 bytes] ∥ EncodeL({Li}i∈[m]).

Algorithm 6 MAYO.ExpandPK(cpk)
Input: Compact public key cpk ∈ Bcpk bytes

Output: Expanded public key epk ∈ Bepk bytes

1: //Parse cpk.
2: seedpk ← cpk[0 : pk seed bytes]
3:
4: //Expand seedpk and return.
5: epk = AES-128-CTR(seedpk,P1 bytes+ P2 bytes) ∥ cpk[pk seed bytes : pk seed bytes+ P3 bytes]
6: return epk.



Algorithm 7 MAYO.Sign(esk,M)

Input: Expanded secret key esk ∈ Besk bytes

Input: Message M ∈ B∗
Constant: E ∈ Fm×m

q //Represents multiplication by z in Fq[z]/(f(z))

Output: Signature sig ∈ Bsig bytes

1: //Decode esk.
2: seedsk ← esk[0 : sk seed bytes]
3: O← DecodeO(esk[sk seed bytes : sk seed bytes+ O bytes])
4: {P(1)

i }i∈m ← DecodeP(1)(esk[sk seed bytes+ O bytes : sk seed bytes+ O bytes+ P1 bytes])

5: {Li}i∈m ← DecodeL(esk[sk seed bytes+ O bytes+ P1 bytes : esk bytes]) //Li ∈ F(n−o)×o
q

6:
7: //Hash message, and derive salt and t.
8: M digest← SHAKE256(M, digest bytes) //M digest ∈ Bdigest bytes

9: R← 0R bytes or R $←− BR bytes //Optional randomization
10: salt← SHAKE256(M digest ∥ R ∥ seedsk, salt bytes) // salt ∈ Bsalt bytes
11: t← Decodevec(m,SHAKE256(M digest ∥ salt, ⌈m log(q)/8⌉)) // t ∈ Fm

q

12:
13: //Attempt to find a preimage for t.
14: for ctr from 0 to 255 do
15: //Derive vi and r.
16: V← SHAKE256(M digest ∥ salt ∥ seedsk ∥ ctr, k ∗ v bytes+ ⌈ko log(q)/8⌉)
17: for i from 0 to k − 1 do
18: vi ← Decodevec(n− o,V[i ∗ v bytes : (i+ 1) ∗ v bytes]) //vi ∈ Fn−o

q

19: r← Decodevec(ko,V[k ∗ v bytes : k ∗ v bytes+ ⌈ko log(q)/8⌉])
20:
21: //Build linear system Ax = y.
22: A← 0m×ko ∈ Fm×ko

q

23: y← t, ℓ← 0
24: for i from 0 to k − 1 do
25: Mi ← 0m×o ∈ Fm×o

q

26: for j from 0 to m− 1 do
27: Mi[j, :]← vTi Lj // Set j-th row of Mi

28: for i from 0 to k − 1 do
29: for j from k − 1 to i do

30: u =

{
{vTi P

(1)
a vi}a∈[m] if i = j

{vTi P
(1)
a vj + vTjP

(1)
a vi}a∈[m] if i ̸= j

//u ∈ Fm
q

31: y← y −Eℓu
32: A[:, i ∗ o : (i+ 1) ∗ o]← A[:, i ∗ o : (i+ 1) ∗ o] +EℓMj

33: if i ̸= j then
34: A[:, j ∗ o : (j + 1) ∗ o]← A[:, j ∗ o : (j + 1) ∗ o] +EℓMi

35: ℓ← ℓ+ 1
36:
37: //Try to solve the system.
38: x← SampleSolution(A,y, r) //x ∈ Fko

q ∪ {⊥}
39: if x ̸= ⊥ then
40: break
41:
42: //Finish and output the signature.
43: s← 0kn // s ∈ Fkn

q

44: for i from 0 to k − 1 do
45: s[i ∗ n : (i+ 1) ∗ n]← (vi +Ox[i ∗ o : (i+ 1) ∗ o]) ∥ x[i ∗ o : (i+ 1) ∗ o]
46: return sig = Encodevec(s) ∥ salt.



Algorithm 8 MAYO.Verify(epk,M, sig)

Input: Expanded public key epk ∈ Bepk bytes

Input: Message M ∈ B∗
Input: Signature sig ∈ Bsig bytes

Constant: E ∈ Fm×m
q //Represents multiplication by z in Fq[z]/(f(z))

Output: An integer result to indicate if sig is valid (result = 0) or invalid (result < 0).
1: //Decode epk.
2: P1 bytestring← epk[0 : P1 bytes]
3: P2 bytestring← epk[P1 bytes : P1 bytes+ P2 bytes]
4: P3 bytestring← epk[P1 bytes+ P2 bytes : P1 bytes+ P2 bytes+ P3 bytes]
5: {P(1)

i }i∈[m] ← DecodeP(1)(P1 bytestring) //P
(1)
i ∈ F(n−o)×(n−o)

q upper triangular
6: {P(2)

i }i∈[m] ← DecodeP(2)(P2 bytestring) //P
(2)
i ∈ F(n−o)×o

q

7: {P(3)
i }i∈[m] ← DecodeP(3)(P3 bytestring) //P

(3)
i ∈ Fo×o

q upper triangular
8:
9: //Decode sig.

10: salt← sig[⌈nk/2⌉ : ⌈nk/2⌉+ salt bytes]
11: s← Decodevec(kn, sig)
12: for i from 0 to k − 1 do
13: si ← s[i ∗ n : (i+ 1) ∗ n]
14:
15: //Hash message and derive t.
16: M digest← SHAKE256(M, digest bytes) //M digest ∈ Bdigest bytes
17: t← Decodevec(m,SHAKE256(M digest ∥ salt, ⌈m log(q)/8⌉)) // t ∈ Fm

q

18:
19: //Compute P∗(s).
20: y← 0m //y ∈ Fm

q

21: ℓ← 0
22: for i from 0 to k − 1 do
23: for j from k − 1 to i do

24: u←



{
sTi

(
P

(1)
a P

(2)
a

0 P
(3)
a

)
si

}
a∈[m]

if i = j{
sTi

(
P

(1)
a P

(2)
a

0 P
(3)
a

)
sj + sTj

(
P

(1)
a P

(2)
a

0 P
(3)
a

)
si

}
a∈[m]

if i ̸= j

//u ∈ Fm
q

25: y← y +Eℓu
26: ℓ← ℓ+ 1
27:
28: //Accept signature if y = t.
29: if y = t then
30: return 0
31: return−1



Remark. Line 24 of the MAYO.Verify algorithm repeatedly uses the values sTi

(
P

(1)
a P

(2)
a

0 P
(3)
a

)
. To get an efficient

implementation, these values can be computed only once and reused, as opposed to recomputing them in every
iteration of the for-loop. The same holds for the values vTi P

(1)
a on line 30 of MAYO.Sign.

2.1.6 Implementing the NIST API

Using the five basic functionalities, we implement the NIST API with the following three algorithms:

– MAYO.API.keypair (Algorithm 4): Outputs a pair (sk, pk) ∈ Bcsk bytes × Bcpk bytes, where sk and pk

are compact representations of a MAYO secret key and public key respectively. This algorithm
is identical to MAYO.CompactKeyGen.

– MAYO.API.sign (Algorithm 9): Takes as input a secret key sk ∈ Bcsk bytes and a message M ∈ Bmlen.
It first callsMAYO.ExpandSK to expand the secret key, and then callsMAYO.Signwith the expanded
public key to produce the signature. It outputs a signed message sm ∈ Bsig bytes+mlen, which is the
concatenation of the signature and the message.

– MAYO.API.sign open (Algorithm 10): Takes as input a signed message sm ∈ B∗ and a public key
pk ∈ Bcpk bytes. It first calls MAYO.ExpandPK to expand the public key, and then it calls MAYO.Verify
with the expanded public key to check if the signature is valid. It outputs the result of MAYO.Verify
and if the signature is valid it also outputs the original message.

Algorithm 9 MAYO.API.sign(M, sk)

Input: Secret key sk ∈ Bcsk bytes

Input: A message M ∈ Bmlen

Output: A signed message sm ∈ Bsig bytes+mlen.
1: //Expand sk.
2: esk← MAYO.ExpandSK(pk)
3:
4: //Produce signature.
5: sig← MAYO.Sign(esk,M)
6:
7: //Return signed message.
8: return sig ∥M
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Algorithm 10 MAYO.API.sign open(pk,M, sig)

Input: Public key pk ∈ Bcpk bytes

Input: Signed message sm ∈ Bsmlen

Output: An integer result to indicate if sm is valid (result = 0) of invalid (result < 0) for pk
Output: The original message M ∈ Bsmlen−sig bytes if sm is valid.

1: //Expand pk.
2: epk← MAYO.ExpandPK(pk)
3:
4: //Parse signed message.
5: sig← sm[0 : sig bytes]
6: M← sm[sig bytes : smlen]
7:
8: //Verify signature.
9: result← MAYO.Verify(epk,M, sig)

10:
11: //Return result and message.
12: if result < 0 then
13: M← ⊥
14: return (result,M)

2.1.7 Parameter sets

2.1.7.1 Chosen parameter sets.

We select and implement four parameter sets: For NIST security level 1, we select two parameter
sets: MAYO1 and MAYO2, where MAYO1 has smaller public keys but larger signatures and conversely
MAYO2 has smaller signatures but larger public keys. For NIST security level 3 and NIST security
level 5, we select one parameter set each, which we refer to as MAYO3 and MAYO5, respectively. The
parameter sets and the corresponding key and signature sizes are displayed in Table 2.1.

Our chosen parameter sets use the following four irreducible polynomials in F16[z]:

f64(z) = z64 +x3z3 +xz2 +x3

f78(z) = z78 +z2 +z +x3

f108(z) = z108 +(x2 + x+ 1)z3 +z2 +x3

f142(z) = z142 +z3 +x3z2 +x2

2.1.7.2 Additional parameter sets.

Table 2.2 gives some additional parameters for NIST security levels 1, 3, and 5 to showcase the possible
trade-offs between public key size and signature size for the MAYO signature scheme. Implementa-
tions of MAYO with these parameter sets can be obtained with minimal effort by changing parameter
values in our implementations of MAYO1, MAYO2, MAYO3, and MAYO5. The main parameter sets MAYO1,
MAYO2, MAYO3, and MAYO5 are shown in boldface.
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Table 2.1: Our selection of parameter sets for MAYO. All sizes are reported in bytes (B) or kilobytes
(KB).

Parameter set MAYO1 MAYO2 MAYO3 MAYO5

security level 1 1 3 5

n 86 81 118 154
m 78 64 108 142
o 8 17 10 12
k 10 4 11 12
q 16 16 16 16

salt bytes 24 24 32 40
digest bytes 32 32 48 64
pk seed bytes 16 16 16 16

f(z) f78(z) f64(z) f108(z) f142(z)

secret key size 24 B 24 B 32 B 40 B
public key size 1420 B 4912 B 2986 B 5554 B
signature size 454 B 186 B 681 B 964 B

expanded sk size 141 KB 99 KB 367 KB 822 KB
expanded pk size 142 KB 104 KB 370 KB 828 KB



Table 2.2: Additional parameter sets for MAYO. The salt bytes, pk seed bytes, and digest bytes parame-
ters are the same as those for the main parameter sets for the same security levels respectively. This
implies that the secret key size is 24, 32, or 40 bytes for parameter sets targetting security levels 1,3,
and 5 respectively. All sizes are reported in bytes (B) or kilobytes (KB).

Security Parameter set
pk size sig size esk size epk size

level (n,m, o, k, q)

( 86, 78, 8, 10, 16) 1420 B 454 B 142 KB 143 KB
( 85, 76, 9, 9, 16) 1726 B 406 B 134 KB 136 KB

( 84, 74, 10, 8, 16) 2051 B 360 B 128 KB 129 KB
( 81, 70, 11, 7, 16) 2326 B 307 B 112 KB 114 KB

1 ( 80, 68, 12, 6, 16) 2668 B 264 B 105 KB 108 KB
( 80, 66, 14, 5, 16) 3481 B 224 B 102 KB 105 KB
( 81, 64, 17, 4, 16) 4912 B 186 B 99 KB 104 KB
( 86, 64, 22, 3, 16) 8112 B 153 B 109 KB 117 KB
(100, 64, 33, 2, 16) 17968 B 124 B 141 KB 158 KB

(123,114, 9, 13, 16) 2581 B 831 B 422 KB 425 KB
(118,108, 10, 11, 16) 2986 B 681 B 368 KB 371 KB
(117,106, 11, 10, 16) 3514 B 617 B 354 KB 358 KB
(116,104, 12, 9, 16) 4072 B 554 B 341 KB 345 KB
(115,102, 13, 8, 16) 4657 B 492 B 328 KB 333 KB

3 (115,100, 15, 7, 16) 6016 B 434 B 320 KB 326 KB
(115, 98, 17, 6, 16) 7513 B 377 B 312 KB 320 KB
(118, 98, 20, 5, 16) 10306 B 327 B 326 KB 336 KB
(121, 96, 25, 4, 16) 15616 B 274 B 331 KB 346 KB
(129, 96, 33, 3, 16) 26944 B 225 B 367 KB 394 KB
(150, 96, 49, 2, 16) 58816 B 182 B 474 KB 531 KB

(156,146, 10, 15, 16) 4031 B 1210 B 870 KB 874 KB
(155,144, 11, 14, 16) 4768 B 1125 B 846 KB 851 KB
(154,142, 12, 12, 16) 5554 B 964 B 823 KB 828 KB
(153,140, 13, 11, 16) 6386 B 881 B 800 KB 806 KB
(152,138, 14, 10, 16) 7261 B 800 B 777 KB 784 KB
(152,136, 16, 9, 16) 9264 B 724 B 764 KB 773 KB

5 (151,134, 17, 8, 16) 10267 B 644 B 741 KB 751 KB
(152,132, 20, 7, 16) 13876 B 572 B 736 KB 750 KB
(155,132, 23, 6, 16) 18232 B 505 B 762 KB 780 KB
(157,130, 27, 5, 16) 24586 B 432 B 764 KB 788 KB
(161,128, 33, 4, 16) 35920 B 362 B 780 KB 816 KB
(172,128, 44, 3, 16) 63376 B 298 B 868 KB 930 KB
(202,128, 65, 2, 16) 137296 B 242 B 1148 KB 1282 KB



Chapter 3

Detailed performance analysis

The submission package includes:

1. A generic reference implementation written only in portable C (C99), described in Section 3.1.

2. An optimized implementation written only in portable C (C99), described in Section 3.2.

3. An additional, Intel AVX2 optimized implementation written in C (C99) and using assembly com-
piler intrinsics, described in Section 3.3.

4. An additional, Arm NEON optimized implementation written in C (C99) and using assembler
compiler intrinsics, as described in Section 3.4.

5. An additional, Arm Cortex-M4 optimized implementation written in C (C99) and assembly code,
as described in Section 3.5.

6. An additional, simple textbook implementation written exclusively in Sage, described in Sec-
tion 3.6.

The implementations 1-4 are delivered in a common code package, where each implementation can
be compiled and built by providing the respective cmake options. For portability purposes, the code
package does not make use of dynamic memory allocation or variable length arrays. The Cortex-M4
optimized implementation is delivered as a separate code package. Libraries supporting the NIST
Signature API are built for each parameter set, along with a test harness to verify the Known Answer
Tests (KAT) and applications to generate the KAT. For a detailed overview of the build options and
built artifacts, we refer to the “README.md” file in the source code package submitted along with the
specification.

All implementations except the Sage textbook implementation are protected against side-channel at-
tacks on the software level: they avoid secret-dependent data indexing and secret-dependent control
flow.

3.1 Reference implementation

The reference implementation uses generic functions applicable for all parameter sets, which allows
to build the implementation in a single library supporting all parameter sets at run-time. This option
leads to a smaller library size and makes it easier for the consumer to use the different MAYO variants
in a single library.

The reference implementation is built with CMake option -DMAYO BUILD TYPE=ref . It is found at
https://github.com/PQCMayo/MAYO-C.
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3.2 Optimized implementation

The optimized C implementation differs in two points from the reference implementation. First, the
MAYO parameters are set at compile-time, resulting in separate libraries for each parameter set. Mod-
ern compilers are highly able to efficiently unroll matrix arithmetic operations which leads to being
able to avoid manually unrolling the loops. Second, specialized batched arithmetic functions are im-
plemented.

A big part of the key expansion computational time is dominated by AES, which allows us to signif-
icantly speed up the performance by using an AES implementation that uses AES-NI. However, this
speedup may differ depending on the AES software implementation used and the Intel CPU genera-
tion.

The optimized implementation is built with CMake option -DMAYO BUILD TYPE=opt. AES-NI is used
by default, if available. It is found at https://github.com/PQCMayo/MAYO-C.

3.3 Intel AVX2 optimized implementation

The AVX2 implementation targets Intel Haswell architectures or later. The implementation utilizes
compiler assembly intrinsics for the SSE2, SSSE3, AVX and AVX2 instruction sets. The implemen-
tation uses AVX2 shuffle instructions to implement F16 arithmetic on field elements in nibble-sliced
encoding, which follows the techniques used in [BCC+24].

The AVX2 implementation is built with CMake option -DMAYO BUILD TYPE=avx2. AES-NI is used by
default, if available. It is found at https://github.com/PQCMayo/MAYO-C.

3.3.1 Performance evaluation on Intel x86-64

We ran the performance evaluation procedure on Intel x86-64 CPU’s of three architectures: Haswell,
Skylake, and Ice Lake. The library was compiled with the following CMake compile options:

– Reference implementation: -DMAYO BUILD TYPE=ref -DENABLE AESNI=OFF

– Optimized implementation (using AES-NI): -DMAYO BUILD TYPE=opt -DENABLE AESNI=ON

– Optimized implementation (without AES-NI): -DMAYO BUILD TYPE=opt -DENABLE AESNI=OFF

– AVX2 implementation (using AES-NI): -DMAYO BUILD TYPE=avx2 -DENABLE AESNI=ON

All builds use -O3 compiler optimization level and -march=native build architecture. Turbo Boost
was deactivated to achieve consistent timings. In Tables 3.1, 3.2, and 3.3, we list the performance
using the four configurations. We see that the use of AES-NI significantly speeds up the overall per-
formance in operations using key expansion.

Using AVX2 optimizations lead to a speed-up factor between approx. 4×-12× in KeyGen, 5×-9× in
Signing (+ExpandSK) and 1.6×-2.5× in Verifying (+ExpandPK).

The fastest results on Intel x86-46 are on the 2.0 GHz Ice Lake platform on which MAYO2 performs
KeyGen in 48×10−6 s, Signing (+ExpandSK) in 143×10−6 s, and Verifying (+ExpandPK) in 28×10−6 s.
Batch signing (without expandSK) takes 89× 10−6 s, and batch verification (without expandPK) takes
11× 10−6 s.

3.4 Arm NEON implementation

The NEON implementation is built with CMake option -DMAYO BUILD TYPE=neon. AES acceleration is
used by default, if available. We have tested the implementation on Apple M1, M2, and M3 processors.
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Table 3.1: MAYO performance in CPU cycles on an Intel Xeon E3-1225 v3 CPU (Haswell) at 3.20GHz.
The library was compiled on Ubuntu with clang version 18.1.3. Results are the median of 1000 bench-
mark runs.

Scheme KeyGen ExpandSK ExpandPK
ExpandSK ExpandPK

+ Sign + Verify

Reference Implementation Generic portable C code, no AES-NI
MAYO1 6,136,664 6,718,475 3,627,190 10,328,148 4,709,958
MAYO2 6,348,792 6,118,928 2,520,575 7,272,585 2,995,910
MAYO3 17,263,145 19,624,527 9,386,543 29,259,792 11,669,640
MAYO5 418,26,120 47,847,047 20,930,209 69,377,987 24,046,202

Optimized Implementation C code, using AES-NI (1st row), no AES-NI (2nd row)

MAYO1
1,052,858 1,742,144 164,227 3,171,356 530,101
4,495,455 5,167,549 3,590,318 6,607,738 3,971,862

MAYO2
1,275,893 1,880,686 69,568 2,422,209 148,387
3,683,763 4,289,329 2,469,638 4,826,897 2,554,868

MAYO3
3,230,269 7,090,999 398,097 10,725,576 1,313,842

12,164,881 16,004,864 9,324,857 19,651,290 10,239,800

MAYO5
8,041,769 14,006,088 802,679 21,918,131 2,400,637

27,980,233 33,990,628 20,734,159 41,824,890 22,360,915

AVX2 Optimized Implementation AVX2 compiler intrinsics and using AES-NI
MAYO1 246,458 289,936 164,286 702,261 290,041
MAYO2 153,420 168,781 69,468 375,493 96,606
MAYO3 574,472 690,839 399,241 1,476,585 664,631
MAYO5 1,338,275 1,823,962 802,931 3,475,547 1,488,808



Table 3.2: MAYO performance in CPU cycles on an Intel Xeon E3-1260L v5 CPU (Skylake) at 2.90GHz.
The library was compiled on Ubuntu with clang version 14.0.0-1ubuntu1 20.04.5. Results are the me-
dian of 1000 benchmark runs.

Scheme KeyGen ExpandSK ExpandPK
ExpandSK ExpandPK

+ Sign + Verify

Reference Implementation Generic portable C code, no AES-NI
MAYO1 4,428,410 5,177,975 3,308,053 7,417,216 4,565,177
MAYO2 3,776,239 4,297,337 2,298,707 4,913,825 2,803,142
MAYO3 12,623,942 15,358,373 8,500,103 21,588,512 11,057,587
MAYO5 27,359,756 33,603,963 19,089,884 44,790,568 24,618,130

Optimized Implementation C code, using AES-NI (1st row), no AES-NI (2nd row)

MAYO1
899,214 1,389,824 105,474 2,797,221 441,935

3,997,247 4,489,772 3,222,065 5,908,751 3,555,313

MAYO2
1,103,437 1,437,613 64,316 1,868,567 142,224
3,315,739 3,613,649 2,238,274 4,041,581 2,314,740

MAYO3
2,998,299 4,930,627 277,937 8,615,942 1,119,046

1,1070,865 13,049,336 8,389,344 16,697,238 9,197,004

MAYO5
8,372,676 13,663,263 618,355 23,777,500 2,106,202

26,417,892 36,818,182 18,670,437 41,815,053 20,261,216

AVX2 Optimized Implementation AVX2 compiler intrinsics and using AES-NI
MAYO1 202,026 236,448 105,454 574,530 247,169
MAYO2 157,929 169,402 64,231 327,303 96,266
MAYO3 473,424 604,958 277,497 1,260,260 589,375
MAYO5 1,197,019 1,707,491 617,173 3,037,778 11,336,685



Table 3.3: MAYO performance in CPU cycles on an Intel Xeon Gold 6338 CPU (Ice Lake) with 2.0 GHz.
The library was compiled with Ubuntu clang version 18.1.8. Results are the median of 1000 bench-
mark runs.

Scheme KeyGen ExpandSK ExpandPK
ExpandSK ExpandPK

+ Sign + Verify

Reference Implementation Generic portable C code, no AES-NI
MAYO1 5,003,442 5,959,158 3,090,332 9,012,970 4,146,684
MAYO2 4,675,660 5,424,294 2,152,894 6,328,160 2,658,042
MAYO3 13,491,044 20,241,010 7,971,570 25,371,070 10,214,798
MAYO5 32,066,684 42,532,676 17,802,768 60,742,348 21,607,318

Optimized Implementation C code, using AES-NI (1st row), no AES-NI (2nd row)

MAYO1
878,654 968,112 59,168 2,724,374 353,682

3,826,622 3,948,928 3,022,428 5,677,050 3,337,256

MAYO2
775,382 1,128,820 33,380 1,541,636 104,290

2,828,124 3,217,220 2,116,456 3,626,054 2,158,068

MAYO3
3,485,616 3,335,336 151,642 8,009,012 877,112

11,223,550 11,092,642 7,850,506 15,680,444 8,569,854

MAYO5
7,063,608 11,878,074 339,616 20,790,296 1,775,574

24,308,544 29,294,506 17,573,154 37,976,996 18,982,458

AVX2 Optimized Implementation AVX2 compiler intrinsics and using AES-NI
MAYO1 118,704 162,746 59,254 471,028 153,266
MAYO2 96,288 108,542 33,536 286,028 56,374
MAYO3 282,446 403,716 151,636 1,017,216 347,972
MAYO5 766,682 1,185,704 341,500 2,387,350 853,920



Table 3.4: MAYO performance of the NEON optimized implementation in CPU cycles on an Apple M1
Max. The library was compiled with the Apple clang toolchain (clang-1600.0.26.3). Results are the
average of 1000 benchmark runs.

Scheme KeyGen ExpandSK ExpandPK
ExpandSK ExpandPK

+ Sign + Verify
MAYO1 133,363 163,985 75,228 434,861 168,769
MAYO2 128,860 132,219 47,015 292,570 73,303
MAYO3 380,032 505,894 199,167 1,073,705 467,230
MAYO5 897,532 1,187,439 446,215 2,278,066 967,922

Table 3.5: MAYO performance of the NEON optimized implementation in CPU cycles on an Apple M3.
The library was compiled with the Apple clang toolchain (clang-1600.0.26.6). Results are the av-
erage of 1000 benchmark runs.

Scheme KeyGen ExpandSK ExpandPK
ExpandSK ExpandPK

+ Sign + Verify
MAYO1 131,133 160,974 73,479 429,283 169,516
MAYO2 125,437 129,119 44,679 279,380 72,482
MAYO3 386,820 490,759 194,321 1,039,799 454,799
MAYO5 895,085 1,158,561 432,300 2,217,257 948,399

The implementation is found at https://github.com/PQCMayo/MAYO-C. Table 3.4 and Table 3.5
shows benchmark results for M1 and M3, respectively.

3.5 Arm Cortex-M4 implementation

Our Arm Cortex-M4 implementation is available at https://github.com/PQCMayo/MAYO-M4.

For benchmarking, we use the ST NUCLEO-L4R5ZI development board which features a STM32L4R5ZI
Cortex-M4 CPU with 2 MB of flash memory and 640 KB of SRAM. We make use of the benchmarking
framework PQM4 [KPR+] and use their implementations of Keccak and AES, i.e., we use the Armv7-M
Keccak implementation from the XKCP [DHP+] and the T-table AES implementation of Stoffelen and
Schwabe [SS16]. Note that AES is only used for expanding public values and, hence, using the T-table
implementation (instead of the slower constant-time bit-sliced implementation) is acceptable even on
Arm Cortex-M4 platforms with a data cache. All implementations were compiled with -O3 using the
Arm GNU toolchain (arm-none-eabi-gcc, version 13.3.1).

Table 3.6: MAYO performance in CPU cycles on the Arm Cortex-M4 (STM32L4R5ZI). The library was
compiled with the Arm GNU toolchain (arm-none-eabi-gcc 13.3.1). Results are the average of 1000
benchmark runs.

Scheme KeyGen ExpandSK ExpandPK
ExpandSK ExpandPK

+ Sign + Verify
MAYO1 9,572,510 9,696,399 6,946,209 16,911,188 11,242,036
MAYO2 9,574,993 8,195,117 4,837,557 11,003,859 6,027,831
MAYO3 27,170,014 29,678,787 18,077,913 45,428,633 28,446,049
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3.6 Sage textbook implementation

The Sage textbook implementation is provided as an easy way to understand the scheme, and to test
the KAT values generated by the C code. It is not protected against side-channel attacks on the soft-
ware level, and should only be used as a reference. It is found at https://github.com/PQCMayo/
MAYO-sage.
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Chapter 4

Known Answer Test values

The submission includes KAT files that contain tuples of secret keys (sk), public keys (pk), signatures
(sm), messages (msg), and seeds (seed) for our implementations of MAYO1, MAYO2, MAYO3, and MAYO5.

The KAT files can be found in the media folder of the submission: KAT.
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Chapter 5

Security Analysis

This chapter is largely based on the security analysis of [Beu22], but is slightly more detailed. We de-
fine two hardness assumptions based on which we tightly prove the MAYO signature scheme to be
EUF-CMA secure in the random oracle model (ROM). Since one of the assumptions is relatively new,
the security reduction in this chapter does not provide a hard guarantee for the security of the scheme
by itself. Still, we hope the security reduction is valuable for cryptanalysts to understand what is nec-
essary to attack our scheme.

5.1 Hard Problems underlying MAYO

The first assumption that we use underlies the security of the Oil and Vinegar signature scheme.
Definition 1 (OV problem). For O ∈ F(n−o)×o

q , let MQn,m,q(O) denote the set of multivariate maps P ∈
MQn,m,q that vanish on the rowspace of

(
OT Io

)
. The OV problem asks to distinguish a random multivariate

quadratic map P ∈ MQn,m,q from a random multivariate quadratic map in MQn,m,q(O) for a random O ∈
F(n−o)×o
q .

LetA be an OV distinguisher algorithm. We say the distinguishing advantage ofA is:

AdvOV
n,m,o,q(A) =

∣∣∣∣∣Pr [A(P) = 1
∣∣P ← MQm,n,q

]
−Pr

[
A(P) = 1

∣∣∣∣∣ O← F(n−o)×o
q

P ← MQn,m,q(O)

]∣∣∣∣∣ .
The OV problem has been studied since the invention of the Oil and Vinegar signature scheme in 1997
and seems relatively well understood.

Our second hardness assumption is tailored to the MAYO signature scheme and is, therefore, a more
recent assumption. This assumption states that picking a random multivariate quadratic map P ∈
MQn,m,q and whipping it up to a larger mapP⋆ ∈ MQkn,m,q results in a multi-target preimage resistant
function on average.
Definition 2 (Multi-Target Whipped MQ problem). For some matrices {Eij}1≤i≤j≤k ∈ Fqm , given random
P ∈ MQn,m,q and access to an unbounded number of random targets ti ∈ Fm

q for i ∈ N, the multi-target
whipped MQ problem asks to compute (I, s1, . . . , sk), such that

k∑
i=1

EiiP(si) +
∑

1≤i<j≤k

EijP ′(si, sj) = tI .

LetA be an adversary. We say that the advantage ofA against the multi-target whipped MQ problem is:

AdvMTWMQ
{Eij},n,m,k,q(A) = Pr

 k∑
i=1

EiiP(si) +
∑
i<j

EijP ′(si, sj) = tI

∣∣∣∣∣∣
P ← MQn,m,q

{ti} ← Fm×N
q

(I, s1, . . . , sk)← Ati(P)

 .
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5.2 Security Proof

In this section, we prove the following theorem:
Theorem 1. LetA be an EUF-CMA adversary that runs in time T against the MAYO signature in the random
oracle model with parameters as in Section 2.1.1, and which makes at most Qs signing queries and at most Qh

queries to the random oracle. LetB = qk−(n−o)

q−1 + qm−ko

q−1 be the bound on the failing probability from Lemma 1 and
suppose QsB < 1, then there exist adversaries BA and B′A against the OVn,m,o,q and MTWMQ{Eij},n,m,k,q

problems respectively, that run in time T + (Qs +Qh + 1) · poly(n,m, k, q) such that:

AdvEUF-CMA
n,m,o,k,q(A) ≤

(
AdvOV

n,m,o,q(BA) + AdvMTWMQ
{Eij},n,m,k,q(B

′A)
)
(1−QsB)

−1

+ (Qh +Qs)Qs2
−8salt bytes + 3Qh2

−8sk seed bytes + (Qs +Qh + 2)22−8digest bytes .

Before we give the proof, which is an adaptation of the proof strategy for PSS [BR98], we recall a lemma
from [Beu22], that gives an upper bound for the probability that the signing algorithm needs to restart
because the matrix A does not have rank m.
Lemma 1. For 0 ≤ i ≤ j < k, let the Eij ∈ Fm×m

q be matrices such that

E =


E11 E12 . . . E1k

E12 E22 . . .
...

...
...

. . .
...

E1k . . . . . . Ekk


is nonsingular. If O ∈ F(n−o)×o

q ,P ∈ MQn,m,q(O) and {vi}i∈[k] in Fn−m
q × {0}m are chosen uniformly at

random, then as a function of {oi}i∈[k] ∈ O the affine map

P⋆(v + o) =

k∑
i=1

EiiP(vi + oi) +
∑

1≤i<j≤k

EijP ′(vi + oi,vj + ok)

has full rank except with probability bounded by qk−(n−o)

q−1 + qm−ko

q−1 .

Let f(z) be an irreducible polynomial and let Z ∈ Fq[z]
k×k be a matrix as in Section 2.1.1. We instanti-

ated the matrices Eij ∈ Fm×m
q for 1 ≤ i, j ≤ k as the matrix that corresponds to multiplication by Zij

in Fq[z]/f(z). The requirement that f(z) does not divide the determinant of Z implies that the matrix
E is non-singular, so Lemma 1 indeed applies to our instantiation of MAYO.

We prove Theorem 1 with two lemmas. The first lemma tightly reduces the EUF-CMA security of the
MAYO signature scheme to the EUF-KOA security, by showing that we can simulate a signing oracle if
B is sufficiently small. The second lemma concludes the proof by giving a tight reduction from the OV

and MTWMQ problems to the EUF-KOA security game.
Lemma 2. Suppose there exists an adversaryA that runs in timeT against theEUF-CMA security of the MAYO
signature in the random oracle model with parameters as in Section 2.1.1, and which makes Qh queries to the
random oracle and Qs queries to the signing oracle. Let B = qk−(n−o)

q−1 + qm−ko

q−1 and suppose QsB < 1, then,
there exists an adversary B against the EUF-KOA security of the MAYO signature scheme that runs in time T +

O((Qh +Qs)poly(n,m, k, q)) with:

AdvEUF-CMA
n,m,o,k,q(A) ≤ AdvEUF-KOA

n,m,o,q (B) (1−QsB)
−1

+ (Qh +Qs)Qs2
−8salt bytes

+ 3Qh2
−8sk seed bytes + (Qs +Qh + 2)22−8digest bytes .

Proof. The EUF-KOA adversary B works as follows:

When B is given a public key pk, it starts simulating adversary A on input pk. B maintains a list L,
which is initially empty. When A queries the random oracle at input M, B responds with t if there is
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an entry (M, t, ⋆) ∈ L; otherwise, B forwards the query to the SHAKE256 oracle, receives the response
t from it, adds (M, t,⊥) to L and responds toAwith t.

B chooses a random seed′sk ∈ Bsk seed bytes. When Amakes a query to sign a message M, B queries the
SHAKE256 oracle on input M to get the digest M digest and adds (M,M digest,⊥) to L. Then,B chooses
a randomizer R like in the real signing algorithm (either at random or as R = 0R bytes) and sets salt ←
SHAKE256(M digest ∥R ∥ seed′sk, salt bytes). B aborts if there is an existing entry (M digest||salt, t,⊥) in
L. If there is an entry (M digest ∥ salt, t, s) in L, then B answers with the signature Encodevec(s) ∥ salt.
Otherwise, B samples s ∈ Fkn

q , and sets t = P⋆(s). Then, B adds (M digest||salt, t, s) to L and outputs
the signature (Encodevec(s) ∥ salt). Finally, when A outputs a message-forgery pair (M, σ), B outputs
the same pair.

The EUF-KOA adversary B runs in time T + O((Qh + Qs + 1)poly(n,m, k, q)), and, hence, we only
need to show thatB succeeds in the EUF-KOA game with a sufficiently large probability. We prove this
with a sequence of games starting with the EUF-CMA game played byA and ending with the EUF-KOA
game played by BA.

1. Let Game0 be A’s EUF-CMA game against the MAYO signature scheme. By definition, we have
that Pr[Game0() = 1] = AdvEUF-CMA

n,m,o,k,q(A).

2. Let Game1 be the same as Game0 except that the game picks a second seed′sk ∈ Bsk seed bytes, which
is used instead of seedsk to derive salt when answering signing queries. If A does not make any
random oracle queries of the formM∥R∥seedsk orM∥R∥seed′sk, which happens with probability at
most 2Qh2

−8sk seed bytes (seedsk has 8sk seed bytes bits on min-entropy), then its view in Game0 and
Game1 is identical. Therefore, we have Pr[Game1() = 1] ≥ Pr[Game0() = 1]− 2Qh2

−8sk seed bytes.

3. Game2 is the same as Game1, but it simulates the random oracle SHAKE256 differently. Game2
simulates the random oracle by maintaining a list L. WhenAmakes a query on a message M, if
there is an entry (M, t, ⋆) in L, the game answers with t; otherwise, it forwards the query to the
SHAKE256 oracle of the EUF-CMA game to receive t, inserts (M, t,⊥) in L and answers with t.
When a signing query is made, Game2 derives M digest and salt. It then:

– Aborts if there is an entry (M digest ∥ salt, t,⊥) in L.

– If there is an entry (M digest∥salt, t, s), it answers the query with the signatureEncodevec(s)∥
salt (a signature derived from the found entry).

– If there is no such entry in L, the game picks t uniformly at random, runs the signing algo-
rithm for t to get a new s, inserts (M digest ∥ salt, t, s) in L, and outputs Encodevec(s) ∥ salt.

Since there are at mostQh+Qs entries of the form (M, t,⊥) inL and there are at mostQs signing
queries, the probability of an abort is at most QhQs2

−8salt bytes. If the game does not abort, then
it simulates the random oracle perfectly, and we have: Pr[Game2() = 1] ≥ Pr[Game1() = 1] −
(Qh +Qs)Qs2

−8salt bytes.

4. Game3 is the same as Game2, except that it answers signing queries differently. Each time a fresh
signing query is made the game repeatedly picks uniformly random vi ∈ Fn−o

q for i ∈ [k], until
it finds a set of vi such that P∗(v + ·) : Ok → Fm

q has full rank. Then, instead of picking t at
random and sampling a random solution o to P∗(v + o) = t, Game3 picks o ∈ Ok uniformly
at random and sets t ← P∗(v + o). Since P∗(v + ·) is a full-rank affine map, it does not affect
the distribution of the signatures. The only difference is that, in Game2, v and o are determined
by the output of the SHAKE256 random oracle on input M ∥ salt ∥ seedsk ∥ ctr, whereas in Game3
they are chosen at random. If the adversary does not make a random oracle query of the form
M ∥ salt ∥ seedsk ∥ ctr (which it can do with at most a probability Qh2

−8sk seed bytes, since seedsk
has 8sk seed bytes bits of min-entropy), then its view in both games is the same, and we have
Pr[Game3() = 1] ≥ Pr[Game2() = 1]−Qh2

−8sk seed bytes.
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5. Game4 is the same as Game3, but with a different winning condition. Game4 outputs 0 if there are
two queries to the SHAKE256 oracle that result in the same output. During the game, there are
at most Qs+Qh+2 queries (the +2 comes from the random oracle queries during the signature
verification process) to the SHAKE256 oracle, and for each of the fewer than (Qs+Qh+2)2 pairs
of distinct queries, the probability of a collision is 2−8digest bytes. We, therefore, havePr[Game4() =

1] ≥ Pr[Game3() = 1]− (Qs +Qh + 2)22−8digest bytes.

6. Game5 is the same as Game4, but the game picks s = v + o uniformly at random instead of o
being random and v being picked uniformly at random from the set of v such thatP∗(v+ ·) has
full rank. Let Good v be the event that arises when, for all the v chosen during the execution of
the EUF-KOA game, the map P∗(v + ·) happens to have full rank. Then, Game5, conditioned on
Good v happening, is identical to Game4. Lemma 1 states that the probability thatP∗(v+ ·) does
not have full rank for a single v is at most B, so, by the union bound, we have:

Pr[Game5() = 1] = Pr[Game5() = 1 |Good v] Pr[Good v] + Pr[Game5() = 1|¬Good v] Pr[¬Good v]

≥ Pr[Game5() = 1] Pr[Good v]

≥ Pr[Game5() = 1](1−QsB) .

7. The final game is the EUF-KOA game played by BA. This is the same as Game5, but with a dif-
ferent winning condition. Game5 is won if the adversary outputs a forgery (M, sig) that is valid
under the SHAKE256 oracle implemented by B, if the signing oracle was not queried on M and if
there were no collisions found in the SHAKE256 oracle. In contrast, the EUF-KOA game is only
won if the forgery is valid for the SHAKE256 oracle of the EUF-KOA game. The SHAKE256 ora-
cle implemented by B is the same as the oracle of the EUF-KOA game for all messages, except
for the messages M digest ∥ salt, where M digest and salt were the message digest and salt used
in one of the queries to the signing oracle. A forgery (M, sig) can only be valid for Game4 but
not for EUF-KOA game if SHAKE256(M) = SHAKE256(M′), where M′ was one of the messages
queries for the signing oracle. Moreover, we must have M ̸= M′, because otherwise the forgery
(M, sig) is not considered valid for Game4, so (M,M′) is a collision for the SHAKE256 oracle. But
if there was a collision, then the game would have aborted. Therefore, we have determined that
if a forgery is valid for Game5, then it must also be valid for the EUF-KOA game. So we have
AdvEUF-KOA

n,m,o,q (B) ≥ Pr[Game5() = 1].

In case (1−QsB) > 0, we can combine the inequalities to get:

AdvEUF-CMA
n,m,o,k,q(A) ≤ AdvEUF-KOA

n,m,o,q (B) (1−QsB)
−1

+ (Qh +Qs)Qs2
−8salt bytes

+ 3Qh2
−8sk seed bytes + (Qs +Qh + 2)22−8digest bytes .

Lemma 3. Let A be an EUF-KOA adversary that runs in time T against the MAYO signature in the random
oracle model with parameters as in Section 2.1.1. Then, there exists an adversaryB against the OVn,m,o,q prob-
lem, and an adversary B′ against the MTWMQn,m,k,q problem, that both run in time bounded by T + O((1 +

Qh)poly(n,m, k, q)) such that:

AdvEUF-KOA
n,m,o,k,q(A) ≤ AdvOV

n,m,o,q(B) + AdvMTWMQ
{Eij},n,m,k,q(B

′) .

Proof. We do the proof as a short sequence of games.

1. We define Game0 to be the EUF-KOA game played byA. By definition, we have

Pr[Game0() = 1] = AdvEUF-KOA
n,m,o,k,q(A) .

2. Game1 is the same as Game0, except that during key generation, the challenger chooses a uni-
formly randomP ∈ MQn,m,q, instead of aP that vanishes on some oil space O. We construct the
adversaryB against the OV assumption as follows: whenB is given a multivariate quadratic map
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P , it computes the encodingsP1 bytestring,P2 bytestring,P3 bytestring of{P(1)
i }i∈[m], {P

(2)
i }i∈[m],

and {P(3)
i }i∈[m], respectively. B then derives seedpk as in the normal key generation algorithm,

and runsAon inputpk = (seedpk∥P3 bytes), while faithfully simulating a random oracleSHAKE256,
and a oracle AES-128-CTR that outputs P1 bytestring ∥P2 bytestring on input seedpk and that out-
puts random bytes otherwise. We designed B in such a way that, if B is given a P ∈ MQn,m,q(O)

for a random O, then BA is exactly Game0, and if B is given a random map P ∈ MQn,m,q, then
BA is Game1. Therefore, we have:

AdvOV
n,m,o,q(BA) = |Pr[Game0() = 1]− Pr[Game1() = 1]| .

3. The next game, Game2, is the MTWMQ game played by the adversary B′A that we now define.
When B′ is given a multivariate quadratic map P and oracle access to arbitrarily many random
targets {ti}i∈N, it does the same thing as Game1, except that instead of simulating a SHAKE256

random oracle honestly, B′ outputs ti in response to the i-th unique random oracle query, trun-
cated or extended with random bits to achieve the requested output length. IfAoutputs a message-
signature pair (M, (salt, s)), then B′ checks if the signature is valid (simulating a random oracle
query in the process). If the signature is valid, then SHAKE256(M) ∥ salt is one of the random
oracle queries, say the I-th unique random oracle query. Then, B′ outputs (I, s). If the signature
is invalid, B′ aborts. The view of A in this game is the same as the view of A in Game1, since B′
simulates the random oracle perfectly. Therefore,A outputs a valid message-signature pair with
probability Pr[Game1() = 1]. Therefore, we have AdvMTWMQ

{Eij},n,m,k,q(B
′A) = Pr[Game1() = 1].

We can now finish the proof by combining Pr[Game0() = 1] = AdvEUF-KOA
n,m,o,k,q(A) with inequalities from

the two game transitions to get:

AdvEUF-KOA
n,m,o,k,q(A) ≤ AdvOV

n,m,o,q(B) + AdvMTWMQ
{Eij},n,m,k,q(B

′) .

5.3 Discussion of the advantage loss in the security proof

The security reduction from the previous section loses advantage by three additive terms (Qs +Qh +

2)22−8digest bytes, (Qh+Qs)Qs2
−8salt bytes, and 3Qh2

−8sk seed bytes, and one multiplicative factor (1−QsB).

Additive loss. The first two terms correspond to attacks that look for hash collisions, and that try to
guess seedsk respectively. We will discuss these in Section 5.4. The remaining term (Qh+Qs)Qs2

−8salt bytes

corresponds to the event, in the random oracle, where the signer outputs a signature for a message
(M, salt), such that the adversary has already queried the random oracle on input SHAKE256(M)∥salt.
To the best of our knowledge, this term is an artifact of the proof and does not lead to an attack. Even
if the salt is completely removed, there seems to be no attack. Nevertheless, to rule out any attack, we
pick salt bytes to be 24, 32, and 40 for security levels 1, 3, and 5 respectively, in order to make the term
sufficiently small. Besides enabling the security proof, the salt brings some protection against fault
injection and side-channel attacks.

Multiplicative loss. The security proof has a loss in advantage by a factor (1 −QsB), where Qs is the
number of signatures that the EUF-CMA adversary can request, and where B = qk−(n−o)

q−1 + qm−ko

q−1 is
an upper bound for the probability that the signer needs to restart the loop on Line 28 of MAYO.Sign.
This factor stems from the fact that the rejection sampling functionality introduces a small amount of
information-theoretic leakage.

If QsB < 1/2, then the term only results in a loss in advantage by a constant factor, so the leakage
provably does not hurt the security of MAYO by much. If QsB > 1, the security proof no longer makes
any guarantees, but there does not seem to be any attack that can take advantage of the information-
theoretic leakage. The Oil and Vinegar signature scheme suffers from the same problem, but with a
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bigger leakage due to the larger restarting probability of approximately 1/q. After decades of crypt-
analysis, no attacks are known that can efficiently make use of this leakage. For MAYO1, MAYO3, and
MAYO5, the bound B is approximately 2−12. For MAYO2 the bound is approximately 2−20, which means
that as long as the adversary sees fewer than 211 or 219 signatures respectively, the leakage provably
does not degrade security much. However, as explained above, we expect the MAYO signature scheme
to remain secure even if the adversary has access to an unbounded number of signatures, even though
the security proof no longer gives a meaningful guarantee.

5.4 Analysis of known attacks

We list the known attacks against the MAYO signature scheme, and we give estimates of their complex-
ity. Given our security proof, we can sort attacks into three categories: attacks that exploit the losses
of the security proof, attacks on the Oil and Vinegar problem, and attacks on the multi-target whipped
MQ problem.

Table 5.1 contains lower bounds for the bit cost of the known attacks against the four proposed param-
eter sets. For the sake of concreteness, we say that the cost of 1 multiplication + 1 addition in F16 is 36
bit operations. This choice is arbitrary, but we make it to be consistent with the multivariate literature,
where the bit-cost of one multiplication + addition in small binary fields of order 2r is often chosen to
be 2r2 + r when reporting the estimated cost of attacks (see e. g., [DCP+20]). We chose the parameters
such that the estimated bit costs of all the attacks exceed 2143, 2207, and 2272 for the parameter sets
aiming for security levels 1, 3, and 5 respectively.

The cost of system-solving algorithms. Some of the attacks use a subroutine that finds a solution
to a system of multivariate quadratic equations. We denote the bit cost of solving a random non-
homogeneous system of m multivariate equations in n variables over Fq using the fixing Wiedemann
XL algorithm [YCBC07, BFP09] by XL Costn,m,q. For (over)determined systems, i.e. n ≤ m, we can
estimate this cost as:

XL Costn,m,q = min
k

36 · 3 · qk ·
(
n− k +Dn−k,m

Dn−k,m

)2

·
(
n− k + 2

2

)
,

where k is the number of coefficients of the solution that is guessed and that is chosen to minimize the
cost, and where Dn−k,m is the operating degree of XL, which can be computed as the smallest integer d
for which the coefficient of td in the expansion of

(1− t2)m

(1− t)n−k+1

is non-positive.

Note that our methodology for estimating the cost of the XL algorithm only accounts for the cost of the
multiplications and ignores any other overhead such as the cost of memory access. It should therefore
be interpreted as a lower bound for the cost of a realistic attack.

Attacks exploiting the loss in the security proof.

Finding hash collisions. One can trivially break the EUF-CMA security of MAYO, by finding a collision
forSHAKE256. If the adversary knows two messagesM1 ̸= M2 withSHAKE256(M1) = SHAKE256(M2),
then it can query the signing algorithm for a signature for M1 and output it as a forgery for M2. Our
instantiations targeting security level 1, 3, and 5 use 256, 384 and 512 bits of SHAKE256 output re-
spectively. With these output lengths, the SHAKE256 functionality is widely believed to achieve the
required security levels.
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Table 5.1: Bit-complexity lower bounds for the state-of-the-art attacks against our proposed parame-
ter sets. The Kipnis-Shamir, Reconciliation, and Intersection attacks are key-recovery attacks, and the
Claw-finding and Direct attacks are universal forgery attacks. For the reconciliation and intersection
attacks, which reduce to the hybrid XL algorithm, we report the operating degree D and the optimal
number of guesses k. For the direct attack we report the ℓ and a parameter from Hashimoto’s algo-
rithm for solving underdetermined systems.

Parameter set Kipnis- Reconciliation Intersection Direct attack Claw-
(n,m, o, k, q) Shamir (D, k) (D, k) (ℓ, a) finding

MAYO1 303
197 355 156

169
(86, 78, 8, 10, 16) (17, 17) (9, 1) (20, 22)

MAYO2 211
167 228 155

141
(81, 64, 17, 4, 16) (14, 15) (10, 0) (14, 6)

MAYO3 416
262 482 224

229
(118, 108, 10, 11, 16) (23, 22) (11,1) (32,23)

MAYO5 546
334 629 296

298
(154, 142, 12, 12, 16) (30, 27) (14, 0) (32, 19)

Guessing seedsk. The attacker can simply try to guess the secret key, which is a uniformly random
string of sk seed bytes bytes. Making a correct guess would take on average approximately 28seedsk−1

attempts. We set sk seed bytes = 24, 32, or 40 for the parameter sets targeting security levels 1, 3, and
5 respectively. The bit length of seedsk is longer than strictly necessary (by 64 bits) to protect against
attacks that attempt to guess the secret key for one out of a large set of public keys of interest.

Attacks on the Oil and Vinegar problem

A MAYO public key consists of an Oil and Vinegar map, i.e., a multivariate quadratic map P : Fn
16 →

Fm
16 that vanishes on some linear subspace O ⊂ Fn

16 of dimension o. The secret key corresponds to
the space O. Therefore, an attacker can break MAYO if he can recover O from P . This problem has
been studied in the literature as it is exactly how a key recovery attack on the Oil and Vinegar signature
scheme works (a MAYO public key is nothing but an Oil and Vinegar key with different parameters). We
list the known attacks against this problem.

Kipnis-Shamir attack. The first attack on the Oil and Vinegar problem was introduced in 1998 by Kip-
nis and Shamir [KS98]. The attack attempts to find vectors in the oil spaceO, by exploiting the fact that
these vectors are more likely to be eigenvectors of some publicly-known matrices. The bottleneck of
the attack is computing the eigenvectors of on average qn−2o matrices of size n-by-n. Asymptotically,
the cost of computing the eigenvectors is the same as that of matrix multiplication. To construct Ta-
ble 5.1, we use 36qn−2on2.8 as a lower bound for the bit cost of the attack. Precise estimates are not
relevant because, as observed in Table 5.1, the cost of the Kipnis-Shamir attack exceeds the require-
ments for the claimed security level by large margins.

Reconciliation attack. [DYC+08] A more obvious method to find vectors in the oil space O is to use
the fact that P(o) = 0 for all o ∈ O. We expect random systems P to have approximately qn−m zeros,
and the Oil and Vinegar maps have an additional qo artificial zeros in the subspace O. If o = n − m

(which is the case for the MAYO parameters), then we expect a constant fraction of the zeros of P to
be in O, so to find a vector in O, an attacker can look for x such that P(x) = 0 using generic system
solving algorithms. The attacker can use o random affine constraints to eliminate o variables in the
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system P(x) = 0, and with constant probability, the resulting system will have a unique solution,
which corresponds to a vector in O. Therefore, finding a vector in O reduces to solving a system of m
inhomogeneous multivariate quadratic equations inn−o variables. Once a single vector inO is found,
finding the rest ofO is a much easier problem, so the cost of the reconciliation attack isXL Costm,n−o,q.

Intersection attack The intersection attack, introduced by Beullens [Beu21] is a generalization of
the reconciliation attack which uses the ideas behind the Kipnis-Shamir attack. The idea is to simul-
taneously look for more than one vector in the oil space. Let k ≥ 2 be some parameter, then the
attack tries to find k vectors in O by solving a system of M =

(
k+1
2

)
m − 2

(
k
2

)
quadratic equations in

N = min(n, nk − (2k − 1)m) variables. In the context of MAYO, we get the most efficient attacks in
the case k = 2. The attack is only guaranteed to work if 3o > n, which is not the case for the MAYO
parameters. If 3o ≤ n, then the attack succeeds with probability q−n+3o−1, so the attack needs to be
repeated on average qn−3o+1 times, which makes the cost of the attack:

qn−3o+1XL Cost3m−2,n,q .

Because o is very small in MAYO, the intersection attack has a very low success probability. This makes
the attack much less efficient compared to the common Oil-and-Vinegar setting where o = m.

Rectangular Minrank attack Furue and Ikematsu showed that the rectangular minrank attack is ap-
plicable to MAYO [FI23]. The idea behind rectangular Minrank attacks [Beu21] is to look at linear maps
of the form Lx : Fn

16 → Fm
16 : y 7→ P ′(x,y). It follows from the fact that P vanishes on O, that for any

o ∈ O, the map Lo has rank at most n− o, because O is included in its kernel. Therefore, if n− o < m,
then Lo has an unusually small rank, since a random linear map from Fn

16 to Fm
16 has rank close to

m. A strategy to find vectors in O is therefore to look for vectors x such that Lx has low rank, which
is an instance of a the minrank problem. For the round 1 parameters of MAYO, this attack is slightly
more costly than other key recovery attacks, so the attack does not directly threaten the security of
the MAYO. For more details we refer to [FI23]. In the round 2 version of MAYO we propose parameters
such that n−o ≥ m, which completely prevents the attack, since Lo will have full rank for most o ∈ O.

Attacks on the multi-target whipped MQ problem.

A signature for a message M consists of a vector s ∈ Fn×k
16 and a salt salt ∈ Bsalt bytes such that P∗(s) =

SHAKE256(SHAKE256(M) ∥ salt), where

P∗(x1, . . . ,xk) :=

k∑
i=1

EiiP(xi) +

k∑
i=1

k∑
j=i+1

EijP ′(xi,xj)

is the whipped Oil and Vinegar map. Therefore, an attacker can forge a signature for a message M by
hashing M with many salts and then trying to find a vector s such thatP∗(s) equals one of the hashes.
Here we give the best known ways an attacker could do this.

Direct attack. In a direct attack the attacker picks a random salt salt ∈ Bsalt bytes, and solves for s ∈
Fn×k
16 such that P∗(s) = SHAKE256(SHAKE256(M) ∥ salt). There are at present no known algorithms

that can take advantage of the structure of the system P∗(s) = t to find a solution more efficiently.
Therefore, to estimate the cost of this attack we will assume that P∗(s) = t behaves like a generic
system of m quadratic equations in kn variables.

The system P(s) = t is underdetermined, i.e. the number of variables nk is larger than the number
of equations m, and therefore the system is expected to have many solutions. The problem of finding
a solution to an underdetermined system of equations clearly reduces to the problem of solving one
of many determined systems: by fixing nk −m variables in P(s) = t one gets a smaller determined
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system P∗(s∗) = t, and any solution to such a determined system yields a solution to P(s) = t. A line
of work by Thomae, Wolf, Furue, Nakamura, Takagi, Hashimoto and others [TW12, FNT21, Has21] has
shown that if a system of quadratic equations is sufficiently underdetermined, then one can improve
over this naive appraoach by doing a change of variables on s, and then fixing variables more cleverly.

Concretely, for parameters a and ℓ satisfyingnk > (a+1)(m−ℓ−a+1) andnk > a(m−ℓ)−(a−1)2+ℓ,
the method of Hashimoto [Has21] finds a solution to P(s) = t with an estimated cost of

qℓ (XL Costm−a−ℓ,m−a,q + XL Costa−1,a−1,q) + (m− a− ℓ+ 1)XL Costa,a,q ,

which is the formula we used to give a lower bound for the bit-cost of a direct attack against MAYO in
Table 5.1.

Claw finding attacks. An attacker can forge a signature for message M by finding a salt and s such
that P(s) = SHAKE256(SHAKE256(M)||salt), which is a claw-finding problem. Since P is homoge-
neous it suffices to find a collision up to a scalar multiple, i.e. find salt and s for which αP(s) =

SHAKE256(SHAKE256(M)||salt) for some α ∈ F16, because then (salt,
√
αs) is a valid forgery. 1 We

give a lower bound for the cost of finding such a claw.

To optimize the attack, one can evaluate only the first m′ equations ofP (as opposed to all m of them),
and look for partial collisions. Then, for each partial collision (salt, s) we fully evaluate P(s) to check
if it is a full collision. The expected number of false positives is qm−m′

, so if we put m′ ⪆ m/2, then the
number of false positives is small enough so that the cost of checking the false positives is negligible
so that we get a constant factor speedup of m′/m ≈ 1/2.

There are qm/(q−1) nonzero vectors in Fm
16 up to a scalar, so an attacker that computesP(si) for X in-

puts {si}i∈[X] and computes SHAKE256(SHAKE256(M)||saltj) for Y salts {saltj}j∈[Y ] finds on average
XY q−m(q − 1) collisions. Using Gray code enumeration [BCC+10], one can evaluate the first m′ ≤ m

polynomials of P in many inputs at an amortized cost of 2 log(q)m′ bit operations per evaluation. For
the sake of concreteness, we say that computing SHAKE256 has a bit cost of at least 217.2 [Sma]. To find
a collision with probability ≈ e−1 we need XY ≈ qm/(q − 1). A lower bound for the bit-cost of the
attack, divided by the success probability is then:

e
(
2 log(q)m′X + 217.2Y

)
,

which is equal to 211.0
√

m log(q)qm/(q − 1) for m′ = m/2 and optimally chosen X , Y such that XY =

qm/(q − 1), which is the formula we use in Table 5.1. Note that for MAYO2 we get a lower bound of
2141 bit operations, which is slightly lower than the estimate of 2143 gates for a key search on AES128
mentioned in the NIST call for proposals document. Nevertheless, we claim MAYO2 reaches NIST se-
curity level 1, since we have ignored significant overheads. The analysis outlined above only looks at
the cost of evaluting P and SHAKE256, ignoring the cost of actually extracting the collision from the
evaluations, which would cause some overhead. E.g., a naive implementation based on large lists of
evaluations incurs a large cost of accessing memory, while a more realistic attacker which uses a mem-
oryless claw-finding algorithm such as Pollard’s rho or van Oorschot-Wiener [vOW96] would likely not
be able to take full advantage of the Gray code enumeration technique.
Remark. We note that it would be possible to increase the cost of claw finding attacks by a few bits “for free”, by
using a slower hash function to derive the target t. Using a hash function that is slower by a factor X , increases
the cost of the attack by a factor

√
X . For small enough values of X , e.g. X = 256, the cost of the hash function

remains negligible compared to the total cost of the signing and verification procedures. We did not deem this
modification necessary.

1We thank M. Saarinen for pointing this out on the NIST PQC forum.
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Quantum attacks.

All the known quantum attacks against MAYO are obtained by speeding some part of a classical at-
tack up with Grover’s algorithm. Therefore, they outperform the classical attacks by at most a square
root factor, and they do not threaten our security claims. Indeed, the NIST security levels 1,3, and 5
are defined with respect to the hardness of a key search against a block cipher such as the AES with
128, 192, or 256-bit keys respectively. Grover speeds up a key search by almost a square root factor,
so, for a quantum attack to break the NIST security targets it needs to improve on classical attacks by
more than a square root factor, which is not possible by relying on Grover’s algorithm alone.

We very briefly discuss how the different attacks can be sped up by Grover’s algorithm:

Claw finding and Hash collisions. Claw-finding and collision-finding for functions that are cheap to
compute are not believed to benefit from quantum computing [JS19].

System-solving attacks. The attacks that reduce to system-solving such as the direct attack, the rec-
onciliation attack, and the intersection attack benefit relatively little from Grover’s algorithm, because
only a small part of the cost comes from guessing some of the variables, and only this part can be sped
up with Grover’s algorithm.

Kipnis-Shamir attack. Almost all of the cost of the Kipnis-Shamir attack comes from guessing a cer-
tain matrix in the hope that it has a good eigenvector, so here Grover can almost fully achieve a quadratic
speedup (assuming there is no restriction on the depth of a quantum attack.). However, for our pro-
posed parameters the Kipnis-Shamir attack is much less efficient than the relevant key search against
the AES classically, and the depth of the Grover oracle that checks if a matrix has a good eigenvalue
is larger than the depth of a Grover oracle that checks if an AES key-guess is correct. Therefore, a
Groverized Kipnis-Shamir attack against MAYO1/MAYO2, MAYO3, or MAYO5, is much more costly than
a Groverized key search against AES-128, AES-192, or AES-256 respectively.

Guessing seedsk. One can almost fully achieve a quadratic speedup for the seedsk-guessing attack, but
we choose the length of seedsk to be 64 bits longer than the length of the AES key that defines the claimed
security level (e. g., seedsk has 192 bits for SL 1 which is defined with respect to AES with 128-bit keys),
so this also does not threaten the security claim.
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Chapter 6

Advantages and Limitations

Advantages

Small key and signature sizes. Compared
to other post-quantum digital signature algo-
rithms, the MAYO signature scheme has short
keys and very short signatures.

Computational efficiency. MAYO offers good
performance for key generation, signing, and
verification. The performance of our optimzed
implementations of MAYO is similar to that of
lattice-based signatures on modern Intel x84-64
or ARM CPUs, and is only slower by a small fac-
tor on embedded platforms such as Cortex-M4
CPUs.

Flexible. Parameter sets are easily adjusted to
reach a specific security level. For each target se-
curity level, there is a flexible trade-off between
signature size and public key size, as demon-
strated in Table 2.2.

Wide security margin against known attacks.
State-of-the-art attacks against MAYO are well-
understood and easy to analyze. We pick pa-
rameters using a conservative methodology that
only focuses on gate count and ignores the cost
of memory accesses and parallelization. More-
over, for the SL1, SL3, and SL5 parameters we
ensured a margin of 10, 15, and 20 bits of secu-
rity respectively against system-solving attacks,
to hedge against future improvements in generic
system solving techniques.

Limitations

Scalability to higher security levels. Multivari-
ate quadratic maps need O(λ3) coefficients to
reach O(λ) bits of security. This causes multi-
variate cryptosystems, such as MAYO, to scale
less well to higher security levels, compared to
e. g., lattice-based signature schemes. For exam-
ple, even though at the lowest security level the
combined public key and signature size of MAYO
is only 50% of that of the Dilithium scheme, at
security level 5, the combined size of MAYO is
already 90% of that of Dilithium. At sufficiently
higher security levels Dilithium would become
more compact than MAYO.

New design. MAYO, invented in 2021, is a rel-
atively recent design. MAYO public keys have
the same structure as Oil and Vinegar public
keys, so decades of cryptanalysis inspire confi-
dence in the security of MAYO against key re-
covery attacks. However, for security against
forgery attacks, MAYO relies on the hardness of
the “Whipped MQ” problem, which has had rela-
tively less public scrutiny.
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