MAYO: Practical Signatures from Oil-and-Vinegar Maps

Basil Hess Matthias J. Kannwischer Ward Beullens Fabio Campos Sofía Celi

Background of Oil and Vinegar (OV) schemes

Since 1985, various authors have proposed building public key schemes where the public key is a set of **multivariate quadratic equations over a small finite field** K. The general problem of solving such a set of equations is NP-hard and considered a good basis for post-quantum cryptography. The Oil and Vinegar scheme (sometimes referred to as unbalanced Oil and Vinegar) [5, 6] is one of the earliest signature schemes in this framework.

In the Oil and Vinegar scheme, the public key represents a trapdoored homogeneous multivariate map $\mathcal{P}(\mathbf{x}) = (p_1, \dots, p_m) : \mathbb{F}_q^n \to \mathbb{F}_q^m$ which consists of a sequence of m multivariate quadratic polynomials $p_1(\mathbf{x}), \dots, p_m(\mathbf{x})$ in n variables $\mathbf{x} = (x_1, \dots, x_n)$. The trapdoor information is a secret subspace $O \subset \mathbb{F}_q^n$ of dimension m, on which $\mathcal{P}(\mathbf{x})$ evaluates to zero. Given a salted hash digest $\mathbf{t} \in \mathbb{F}_q^m$ of a message M, the trapdoor information allows sampling a signature **s** such that $\mathcal{P}(\mathbf{s}) = \mathbf{t}$.

To do this, the signer first picks a random vector $\mathbf{v} \in \mathbb{F}_q^n$, and then solves for a vector \mathbf{o} in the oil space O such that $\mathcal{P}(\mathbf{v} + \mathbf{o}) = \mathbf{t}$. In general, for a quadratic maps \mathcal{P} we can define its differential \mathcal{P}' as $\mathcal{P}'(\mathbf{x}, \mathbf{y}) := \mathcal{P}(\mathbf{x} + \mathbf{y}) - \mathcal{P}(\mathbf{x}) - \mathcal{P}(\mathbf{y})$, which is a bilinear map. Using \mathcal{P}' , it becomes apparent that solving

Performance (AVX2)

Following the work of [3], we present the following results on Intel Skylake and Icelake using a nibblesliced implementation with the Method of the 4 Russians (M4R).

Nibble Representation	(M4R)
-----------------------	-------

Scheme	KowCon	EvnandSK	EvnandDK	ExpandSK	ExpandPK
Jeneme	Neyden	Буранцок	Баранигк	+ Sign	+Verify
$MAYO_1$	73668	82 820	43970	283126	83846
$MAYO_2$	144 508	154 002	59178	324 402	84974
$MAYO_3$	295 606	358416	147758	920944	344 994
$MAYO_5$	642 690	889 100	355 238	1737426	706316
$MAYO_1$	43 550	53710	22432	218 300	53660
$MAYO_2$	86014	98 402	30 2 4 4	239 852	47 360
	$\begin{array}{c} MAYO_1\\ MAYO_2\\ MAYO_3\\ MAYO_3\\ MAYO_5\\ MAYO_1 \end{array}$	MAYO1 73668 MAYO2 144508 MAYO3 295606 MAYO5 642690 MAYO1 43550	MAYO17366882820MAYO2144508154002MAYO3295606358416MAYO5642690889100MAYO14355053710	MAYO1736688282043970MAYO214450815400259178MAYO3295606358416147758MAYO5642690889100355238MAYO1435505371022432	SchemeKeyGenExpandSKExpandPK+ SignMAYO1736688282043970283126MAYO214450815400259178324402MAYO3295606358416147758920944MAYO56426908891003552381737426MAYO1435505371022432218300

for **o** is easy, because

$$\mathcal{P}(\mathbf{v} + \mathbf{o}) = \underbrace{\mathcal{P}'(\mathbf{v}, \mathbf{o})}_{\text{Linear in } \mathbf{o}} + \underbrace{\mathcal{P}(\mathbf{o})}_{=0} + \underbrace{\mathcal{P}(\mathbf{v})}_{\text{fixed}} = \mathbf{t}$$

is a system of m linear equations in m variables (since O has dimension m). The signer outputs the signature $\mathbf{s} = \mathbf{v} + \mathbf{o}$. To verify a signature, the verifier simply recomputes $\mathcal{P}(\mathbf{s})$ and the hash digest \mathbf{t} , and verifies that they are equal.

A practical drawback is that the public map \mathcal{P} consists of approximately $mn^2/2$ coefficients. We can sample \mathcal{P} such that approximately $m(n^2 - m^2)/2$ of the coefficients can be expanded publicly from a short seed, but the remaining $m^3/2$ coefficient still make for a relatively large public key size. (e.g., 66 KB) for 128 bits of security). This problem is solved by our scheme: MAYO [1, 2].

A practical scheme: MAYO

MAYO is a variant of the Oil and Vinegar scheme whose public keys are smaller. A **MAYO** public key \mathcal{P} has the same structure as an Oil and Vinegar public key, except that the dimension of the space O on which \mathcal{P} evaluates to zero is "too small", i.e., $\dim(O) = o$, with o less than m. We explore the scheme below.

MAYO

In MAYO, The dimension of the space O is "too small", which makes the problem of recovering O from \mathcal{P} becomes much harder, which allows for smaller parameters. However, since O is "too small", the algorithm to sample a signature s such that $\mathcal{P}(\mathbf{s}) = \mathbf{t}$ breaks down: the system $\mathcal{P}(\mathbf{v} + \mathbf{o}) = \mathbf{t}$ is now a system of m linear equations in only o variables, so it is very unlikely to have any solutions. We need a new way to produce and verify signatures.

The solution is to publicly "whip up" the oil and vinegar map $\mathcal{P}(\mathbf{x}): \mathbb{F}_q^n \to \mathbb{F}_q^m$ into a k-fold larger map $\mathcal{P}^*(\mathbf{x}_1,\ldots,\mathbf{x}_k): \mathbb{F}_q^{kn} \to \mathbb{F}_q^m$, where k is a parameter of the scheme. The whipped map \mathcal{P}^* is constructed in such a way that it evaluates to zero on the subspace $O^k = \{(\mathbf{o}_1, \ldots, \mathbf{o}_k) | \forall i : \mathbf{o}_i \in O\}$ which has

MAYO₃ 169 258 237 450 74 992 718 586 205 938 MAYO₅ 369898 517660 180568 1244038 401310

Table 2. Performance of MAYO in CPU cycles on Intel Xeon E3-1245 v5 (Skylake) and Xeon Gold 6338 (Ice Lake) using the nibble representation.

Туре	Sec. Lvl.	Key Gen.	Sign	Verify
	MA	YO [2] (default/pr	e-expanded)	
MAYO ₁	1	44k/44k	218k/165k	54k/31k
$MAYO_2$	1	86k/86k	240k/142k	47k/17k
$MAYO_3$	3	169k/169k	719k/481k	206k/131k
$MAYO_5$	5	370k/370k	1 244k/726k	401k/221k
	Oil a	and Vinegar [4] (pk	c+skc/classic)	
ovIp	1	2 316k/2 341k	1 548k/79k	168k/58k
ovIs	1	3715k/3734k	2063k/83k	203k/46k
ovIII	3	13 168k/12 832k	8 293k/243k	679k/197k
ovV	5	34 989k/35 792k	18 802k/462k	1 514k/364k
		Dilithium		
dilithium2	2	81k	219k	79k
dilithium3	3	137k	355k	129k
dilithium5	5	212k	420k	204k

Table 3. MAYO performance in CPU cycles using AVX2 optimizations in comparison with other post-quantum signature schemes running on Intel Ice Lake (Xeon Gold 6330). Dilithium, Falcon and SPHINCS+ benchmarks use libOQS v0.9.0-rc1 with AVX2 optimized code.

Performance (Arm Cortex-M4)

dimension ko. Concretely, we define:

$$\mathcal{P}^*(\mathbf{x}_1,\ldots,\mathbf{x}_k) := \sum_{i=1}^k \mathbf{E}_{ii}\mathcal{P}(\mathbf{x}_i) + \sum_{i=1}^k \sum_{j=i+1}^k \mathbf{E}_{ij}\mathcal{P}'(\mathbf{x}_i,\mathbf{x}_j)$$

where the $\mathbf{E}_{ij} \in \mathbb{F}_q^{m \times m}$ are fixed public matrices (referred to as **E**-matrices), and $\mathcal{P}'(\mathbf{x}, \mathbf{y})$, the differential of \mathcal{P} , is defined as $\mathcal{P}'(\mathbf{x}, \mathbf{y}) := \mathcal{P}(\mathbf{x} + \mathbf{y}) - \mathcal{P}(\mathbf{x}) - \mathcal{P}(\mathbf{y})$. We choose parameters such that ko > m to make sure that the space O^k is large enough so that the signer can sample signatures $\mathbf{s} = (\mathbf{s}_1, \dots, \mathbf{s}_k)$ such that $\mathcal{P}^*(\mathbf{s}) = \mathbf{t}$ with the usual Oil and Vinegar approach. The signer first samples $(\mathbf{v}_1, \dots, \mathbf{v}_k) \in \mathbb{F}_q^{kn}$ at random, and then solves for $(\mathbf{o}_1, \dots, \mathbf{o}_k) \in O^k$ such that

$$\mathcal{P}^*(\mathbf{v}_1 + \mathbf{o}_1, \dots, \mathbf{v}_k + \mathbf{o}_k) = \mathbf{t}$$

which is a system of m linear equations in ko variables.

Parameter sets of MAYO

We chose 4 parameter sets in accordance to security levels 1, 3, and 5, which seem to work pretty good in many network protocols.

Parameter set of scheme	$MAYO_1$	$MAYO_2$	$MAYO_3$	$MAYO_5$
Security level of scheme	1	1	3	5
n	66	78	99	133
m	64	64	96	128
0	8	18	10	12
k	9	4	11	12
q	16	16	16	16
salt_bytes	24	24	32	40
digest_bytes	32	32	48	64
pk_seed_bytes	16	16	16	16
f(z)	$f_{64}(z)$	$f_{64}(z)$	$f_{96}(z)$	$f_{128}(z)$
Secret key size	24 B	24 B	32 B	40 B
Public key size	1168 B	5488 B	2656 B	5008 B
Signature size	321 B	180 B	577 B	838 B
Expanded sk size	69 KB	92 KB	230 KB	553 KB
Expanded pk size	70 KB	97 KB	233 KB	557 KB

		· · ·	 	 	-	

Туре	Sec. Level	Key Gen.	Sign	Open			
	MA	YO					
MAYO ₁	1	4410k	8 270k	4 808k			
MAYO ₁ -pre	1	4410k	3 888k	1 709k			
$MAYO_2$	1	8 847k	9916k	5 102k			
$MAYO_2$ -pre	1	8 847k	2761k	952k			
MAYO ₃	3	15 972k	27 401k	15 573k			
MAYO ₃ -pre	3	15 972k	10 204k	5 102k			
Oil and Vinegar							
ovIp (classic)	1	138 833k	2 482k	995k			
ovIp (pkc+skc)	1	175021k	88 7 57 k	11 551k			
ovIs (classic)	1	195 744k	2 374k	616k			
ovIs (pkc+skc)	1	296 161k	113 446k	16045k			
Dilithium							
dilithium2	2	1 598k	4 093k	1 572k			
dilithium3	3	2 827k	6 623k	2692k			
Falcon							
falcon-512	1	163 994k	39014k	473k			
	SPHI	NCS+					
sha256-128f-simple	1	15 388k	382 534k	21 151k			
sha256-128s-simple	1	985 367k	7 495 604k	7 166k			

Table 4. MAYO performance on Cortex-M4 in comparison to other post-quantum signature schemes. MAYO pre variants refer to pre-expanded public and secret keys in a similar fashion as *classic* OV.

Advantages

Table 1. Parameter sets for MAYO. All sizes are reported in bytes (B) or kilobytes (KB).

• Small key and signature sizes. MAYO offers some of the smallest sizes of all current candidates.

- Computational efficiency. MAYO performance is competitive with Dilithium on big CPUs.
- Flexibility. MAYO parameter sets are easily adjusted to reach a specific security level.

• Wide security margin. Known attacks against MAYO are well-understood and easy to analyze.

References

- [1] Ward Beullens. MAYO: Practical post-quantum signatures from oil-and-vinegar maps. pages 355–376, 2022.
- [2] Ward Beullens, Fabio Campos, Sofía Celi, Basil Hess, and Matthias Kannwischer. MAYO. MAYO specification, 2023. https://pqmayo.org/assets/specs/mayo.pdf.
- [3] Ward Beullens, Fabio Campos, Sofía Celi, Basil Hess, and Matthias J. Kannwischer. Nibbling MAYO: Optimized implementations for AVX2 and Cortex-M4. Cryptology ePrint Archive, Paper 2023/1683, 2023. https://eprint.iacr.org/2023/1683.
- [4] Ward Beullens, Ming-Shing Chen, Shih-Hao Hung, Matthias J. Kannwischer, Bo-Yuan Peng, Cheng-Jhih Shih, and Bo-Yin Yang. Oil and vinegar: Modern parameters and implementations. *IACR Transactions on Cryptographic Hardware and Embedded Systems*, 2023(3):321–365, Jun. 2023.
- [5] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil and Vinegar signature schemes. pages 206–222, 1999.
- [6] Jacques Patarin. The Oil and Vinegar signature scheme. In *Dagstuhl Workshop on Cryptography September*, 1997, 1997.